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SSPARAMA: A NONLINEAR, WAVE OPTICS MULTIPULSE
(AND CW) STEADY-STATE PROPAGATION CODE WITH

ADAPTIVE COORDINATES

INTRODUCTION

Several methods of propagating CW high-energy laser beams through the atmosphere
have been reported previously [1,2]. This report will describe a method for propagating
multiply pulsed laser beams in a nonlinear atmosphere by adapting the coordinate system
to the amount of thermal blooming. This technique increases the accuracy of thermal-
blooming calculations and extends the capability of the code in the case of extreme beam
distortion.

The computer code SSPARAMA calculates the steady-state intensity pattern of a
train of high-energy laser pulses propagating through the atmosphere in the presence of
thermal blooming. Steady state is achieved when enough equally spaced, equal-energy
pulses have been propagated for transients in air heating to have died out. In the steady
state a single pulse will propagate in an atmosphere that has been heated by many
preceding pulses which have the same energy distribution as the pulse one is calculating.
The pulse widths are assumed to be short compared to the sound transit time across the
face of the beam, so that self-blooming will not take place. Blooming occurs only as a
result of air heating by preceding pulses. However, to avoid problems of plasma forma-
tion, the pulse width must be sufficiently long that the critical intensity for air break-
down is not exceeded. Finally, as the pulse is propagated from one coordinate plane to
another, coordinate transformations are performed to insure that the transverse scale
lengths are adapted to the amount of thermal blooming induced on the pulse train by the
negative lensing influence of the heated atmosphere.

Another requirement for steady-state propagation is that a cooling mechanism exist
for removing heated air from the path of the beam. In SSPARAMA, cooling is provided
either by a wind moving perpendicular to the propagation direction or by beam sluing
about an axis in the aperture plane perpendicular to both the wind and the propagation
directions. The steady-state density changes Ap introduced in the path of a given pulse
by energy absorption from all preceding pulses can then be expressed as [3]

P 1 2 xEpe z E j0(x-nAt.s(vo +Q2z),y,z)I 2M nsi I

Manuscript submitted October 14, 1976.
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WHITNEY, MADER, AND ULRICH

where

z = the distance in the propagation direction measured from the aperture plane,

x = the distance in the wind direction measured from beam maximum intensity
in the aperture plane,

-y = the ratio of atmospheric specific heats (- 1.4),

c,= the speed of sound in air (t340 m/s),

oa = the absorption coefficient for the laser radiation,

Ats = the pulse spacing,

Ep = the energy of each laser pulse,

vo = the wind speed along the x direction perpendicular to the direction of
propagation, and

Q = the angular sluing rate of the beam about the y axis.

Finally 0 is the normalized steady-state energy distribution of each pulse at the z plane:

fh(x, ye z)12 dxdy = 1. (2)

This density reduction Ap changes the index of refraction from its ambient value no,
where no ; 1, to

n2 - n 2 + 3NAp,

where N is the molecular refractivity of air (t0.154 cm3/g). The distribution 0 must
then be calculated self-consistently from the propagation equation:

[2ik a + a2 + a2 + 3N2Ap(1012) =0, (3)1 az ax2 ay2 3NA ()J()

where k = 2ir/X is the wavenumber of the laser radiation. It is assumed in SSPARAMA
that at z = 0 the pulse train has a spherical phase front and a truncated intensity profile.
For example, when truncated Gaussian pulses are propagated

¢(x, y, 0) = Ngkg(x,y), x2 + y2 < 2a2 ,

= 0 x2 + y 2 > 2a2 , (4)

where

g(X) 1 e-[1+(ika2 lf)] [(x 2 +y2 )/a2]l2 (5)

2



NRL REPORT 8074

and Ng is a normalization constant insuring that Eq. (2) is satisfied at z = 0. Two scale
lengths, a and f, are defined in Eq. (5). The scale length f, the initial curvature of the
phase front, defines the distance from the aperture to the focal plane. At a distance a
from the aperture center the beam intensity falls to le of its maximum value, and the
beam is truncated at 1/e2 of maximum intensity.

Altogether eight variable physical quantities, a, f, k, a, Ep, At5 , vo, and Q2 appear in
Eqs. (1) through (5). All variations will not however lead to a mathematically distinct
problem. In SSPARAMA Eqs. (1) through (5) are scaled so that distinct propagation
problems are defined in terms of five dimensionless parameters. The program is designed
to accept either the set of data with dimensions or the dimensionless set, and both sets
are printed out.

The scaling of Eqs. (1) through (5) is carried out via the coordinate transformations

x _ x y - Y, z (6)
a? a (6

and the variable transformation

ei~x y, )-aO(x, y, z). (7)

By multiplying Eq. (3) through by a3 , one can write the propagation equation in a form
which identifies the five dimensionless parameters characterizing propagation in
SSPARAMA:

{2iNk a _ a22+aa2 NkNCez-NzZl -2(+N(,)+,5 ,01}h=0. (8)
2k a.~2 a~2

No, iF 12

The five parameters, Nk, NC, Na, No, and N5, are defined as

Nk = ka 2 /f, (9)

Nc=3Nk('y - 1)afEp 10
CS 2a2(10)

Na = cf, (11)

No = 2a (12)

and

Ns = 92f/uo. (13)

Nk is the Fresnel number of the free-propagation problem, and Nc, Na, No, and N8 are
coupling strength, absorption, overlap, and sluing parameters respectively. No was intro-
duced by Wallace and Lilly [4] and called the pulses-per-flow-time parameter. It
measures the number of preceding pulses which have heated the air across the beam
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WHITNEY, MADER, AND ULRICH

aperture as the pulse under study begins to propagate. The solution to Eq. (8) is ob-
tained subject to the energy normalization

sl (3' y, 0)12 dx dy = 1 (14)

and the initial condition

¢ )= IeiNk(j 2+52)/2 (15)

where I 0I = 0 for x2 + y2 > 2.

Equations (8), (14), and (15) are numerically solved in SSPARAMA on a 64-by-64
grid in the xy plane. Since one would like to use as much of the computational grid as
possible to describe the variations in beam intensity, a scheme for adapting the coordi-
nate grid to the propagation must be used. For example, as the beam propagates, the
initial focusing causes the beam intensity pattern to decrease in size until the negative
lensing effects of the heated atmosphere accumulate to thermally defocus it. Moreover,
since the wind removes heated air from the path of the beam from left to right, a
thermal gradient is established that deflects the beam from right to left. If the computa-
tional grid were not moved or changed in size as the beam intensity was calculated from
aperture to focal plane, the intensity pattern would either be poorly sampled as it de-
creased in size or it would expand or deflect to reach the boundary of the grid and
invalidate the calculation.

A technique for adapting the computational grid to local changes in the size or
location of the beam intensity pattern has been developed by Herrmann and Bradley [5].
A slightly modified form of their technique has been incorporated into SSPARAMA and
will be described in the next section of this report. In the third section the numerical
procedures used in SSPARAMA will be described, and in the fourth section the code
usage will be explained.

COORDINATE-SYSTEM ADAPTION

The dimensionless form of the propagation equation can be rewritten more com-
pactly as

[2iNkaj+ a? +a.? +k 2a2(n2 - l)] = 0, (16)

where n2 - 1, the nonlinear index of refraction, depends on 0 as given by Eq. (8). The
cyi coordinate system is normalized to the constant lengths a and f, and is fixed in space.
In this system therefore the beam will lie symmetrically about the origin of the xy plane
only at i = 0 with an extent of order 1 (see, for example, Eq. (15)). When z = 0, a new
set of xy coordinates is needed to maintain the two properties that the beam be centered
about the xy coordinate origin and be of order 1 in extent. In general, one can relate
the xy and 3y coordinates by a set of scale parameters D1 and D2 and a deflection
parameter X, which are functions of z. Since one would like to solve Eq. (16) in a set of
coordinates that adapt to changes in beam size and direction, the coordinate transformation
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must be related to these beam changes as determined by the linear and quadratic terms
of the phase front. By analogy therefore with the transformation to dimensionless
parameters, one must perform simultaneous coordinate and variable transformations.
The form of these transformations is suggested by linear propagation theory:

x= x/, (17)

Y = I, (18)

i = Z. (19)
Nk

and

0~~~~ =j e(&,_2 +&2 y2 +0A+11+72) (20)

The constant scale change from i to z is done for convenience to eliminate Nk from the
z-derivative term in Eq. (16):

2iNkai -+ 2ia,.

The factor 1/D 1D2 is removed from f to insure the form invariance of the energy
normalization:

f I2 d.dy =f Ikl2 dxdy = 1. (21)

When Eqs. (17) through (20) are substituted into Eq. (16) and when the nonlinear
term is of negligible size and the beam has a Gaussian profile, D1 , D2 , X, &1, &2, A, h,
and i2 as functions of z can be analytically determined for all z. However, when the
nonlinear term is important or when a non-Gaussian beam is propagated, the o's and A,
which represent the effective quadratic and linear phase changes throughout the xy plane,
can no longer be so determined. One must adopt a more limited strategy for the em-
ployment of Eqs. (17) through (20).

Consider, for example, that the quantities D1, D2 , X, &1, &2, A, jj, and i2 are
known at z = z0 and that their dependence on z is to be analytically determined as one
propagates to a neighboring xy plane at z0 + Az. Since

X 1 Dx (22)

= 1Da2 (23)
Y' D2 23

5



WHITNEY, MADER, AND ULRICH

and

ai Iaz - (2 az In D1 + azx) ax - Y az ln D2 aYl, (24)

Z Nk V \2 V~/ 2 

one finds that

[2iNka- + aX2 + ay2 + k2 a 2 (n 2 - 1)] ei(&1j2+&2y2+P+11+72)

= 2i az - a lnDI 3a ---- AzXa az InD2 ay)

-2 (az InDI + az ln D2) - 2az(rj+ 2) + 1 ax2 - [2&j(/-x +x) + :]2

2~~~~~~~D
+ < [2&i(V/Dix +x) + $] 3x + 2i&l1 + D- y -4&22D 2 y2

+ 4 i&2yay + 2i&2 + k2a2(n2 - 1) } 4 = 0. (25)

For vanishingly small n2 - 1 and for a real Gaussian profile 4/(x, y, z0 ) one would deter-
mine D1 , D2 , X, &1, &2, :, wI, and j 2 from the requirement that Eq. (25) be capable of
being put in the form

2iaz + D1 (aX2 + X2) + 1 (ay2 + y2) + k2a2(n2-1)] . (26)

Then, as 4/ was propagated to zo + Az, it would acquire no z dependence and would
remain real and Gaussian; that is, all of the z dependence of q would have been accounted
for in D1 , , i2-

For the imaginary terms of Eq. (25) other than 2i 3z to vanish, the quantities D1 ,
D2 , and X, which determine the scale and location of the xyz coordinate system, must
satisfy the equations

3 lnDI = 4 &1, (27)

3z lnD2 = 4&2, (28)

and

azX = 2&1 X + ,B. (29)

On the other hand, for the real terms involving a. and ay to vanish and for the scale
functions D1 and D2 to be factorable from the remaining x and y terms respectively, the
phase functions &1, &2, ,B, j1, and 72 must satisfy the set of equations

6
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:rr2D1a2&1 + 4&?1D1 = , 30

2 1 e 
222D2a,&2 + 4U2 D2 -- , (31)

a,0 + 2Xazol + 2&1 (2&jX+p) = 0, (32)

2a3,j + 2X2az&l + 2XMz + (2°IXX+ )2 = - 1 (33)

and

23z 2 =- 1 * (34)
D2

Thus Eqs. (27) through (34) will determine all of the z dependence of ¢ when 4(x, y, z0 )
is real and a Gaussian function of x and y and there is no lensing effect caused by heating
of the atmosphere; that is, Eqs. (27) through (34) will describe beam focusing in the
absence of diffraction and nonlinear media phenomena. They are of more limited utility
when such phenomena are present. In this case, during the displacement of 0 from z0 to
Z0 + Az, linear and quadratic phase changes will arise from two sources. As a result of
focusing at z = z0 , the initial phases &1(zo), &2(Z0), and ~(zo) will become &i(zo + Az),
O&2(ZO + Az), and O(zo + Az) through the solution to Eqs. (27) through (34). In addition
however 4 at zo + Az will acquire linear and quadratic phases, AO, A&1, and A&2 respec-
tively, as a result of diffraction and thermal blooming. Thus at zo + Az a new factoriza-
tion of 0 must be made, namely,

¢(XA~) 4/(X, y, zo + Az) ei[&'i(Zo+Az)x2+ &2(zo+Az)52 +-'(z 0+AZ)i+' ;+,~]

DID(z0 +Az)D2 (zo +Az)
(35)

if ', which is to be propagated from zo + Az to zo + Az + Az', is not to initially have
quadratic or linear phase terms. After each step in propagation therefore &1, &2 , and (B
must be redefined as

&j'(Zo +Az) = &1 (ZO +Az) + A&1, (36)

2(ZO + AZ) = &2 (ZO + AZ) + A&2, (37)

and

,B(Zo + AZ) = N(zo + AZ) + Aj (38)

in order to adapt the coordinate-system determination from Eqs. (27) through (29) to
changes in phase that result from focusing, diffraction, and thermal blooming.

7
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In SSPARAMA, 4 is propagated from one z plane to another by finite-differencing
a phase-transformed version of Eq. (26). Then Aa1, Aa2, and AO3 are found in the xyz
coordinate system using the method of phase minimization discussed by Herrmann and
Bradley [5]. One requires that

f 14/2[V(Aalx2 + aa2 y2 + Ax -y)]2 dxdy = minimum, (39)
z=z 0 +Az

where (x, y, zo + Az) Io/Ie"y. It follows that

D1E - B1C(
2(A 1E - B1

2) (40)

AP A1 C1 - B1 D1 (41)

A1 E - B1
2

and

Aa 2 = 2 (42)
2A

where

A I fX2I1412dxdy, A2 _fy2 i4/2dxdy, (43)

B1 -fxI412 dxdy, (44)

C, -m If4*ax idxdy, (45)

D, --Im fx4/*3x4dxdy, D2 - fImfy /*3 y 4dxdy, (46)

and

E -jfi412 dxdy = 1. (47)

The factorization

4/(x, y, zo + Az) - 'ei(Aax2 +Aa2y 2+Aflx) (48)

will then define ' at zo + Az as a wave function of minimum quadratic and linear phase.
In particular, if 4 is exactly a Gaussian beam, 4' will be real.

8
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The relationship between {AU1, Ac2,
tuting Eqs. (17) and (18) into Eq. (48):

A13} and {A&1, Aa2 , A,} is found by substi-

Au,
iA&1 = -,

Ac 2 = D
D2

AF = AOM
~,D- 

(49)

(50)

(51)

A similar set of equations will hold between {&j, a2, } and {I 1 , C2, ,B3, which are
computed directly in the xyz coordinate system. When reexpressed in terms of a1 , a2

and ,B, Eqs. (27) through (29) become

azD1 = 4al,

azD2 = 4U2 , (

and

azX=,(
and Eqs. (30) through (32) transform into

azal = 1 (1 +4al 2 ), (

2D1

a2ce2 = 1 i~(1 +4ce2 2),(
2D2 2

and

az o = (D

52)

53)

54)

55)

56)

(57)

Eqs. (52) through (57) must be solved in terms of initial values at zo. The solutions are

D1 , 2 (Z) = D1 ,2 (Z0 ) {[1 +
2lce, 2 (zo) (z ZO)]

2
r z - ZOIi

LD1,2(ZO)JI

9
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WHITNEY, MADER, AND ULRICH

C'1 ,2 (Z) = U1,2(.0) + 2 {1 +[2ea, 2 (ZO)]2 } 0 , ZO (59)

[2a, (ZO) I2 Fz -_zol2
(z) = PNZ0) l+D, zo) [(z) -Z)] + D1 Z-) ' (60)

and

X(z) = X(zO) + O g (z - ZO). (61)
\.D-1 (z 0 )

Finally the procedure for solving Eq. (26) in SSPARAMA is similar to the one
described in an earlier report [2]. A phase transformation on 4 is made:

¢(x, Y, z) - (x, y, z) e-(l)Zgxyzd (62)

where

g(x, Y, Z) D (1-X 2 ) + D + k2a2(n2 -1). (63)

The equation for FD follows from Eq. (26):

[2i az + H(x, y, z)]I = 0, (64)

where

H = e-~(i/2)fgdz' a 2 + 1 a 2 e ( )f (65)

By picking zo to lie between zo and zo + Az, one can propagate 4) from zo to zo + AZ0,
with first-order accuracy, by solving the equation

[2iaz + H(x, y, z)] = (2iaz + a1 a2 + 1aY2) = 0. (66)

Equation (66) is solved by Fourier transforming 4) [6],

(D (kj, k2, zO) )fei(h1x+k2Y)(xy,zo)dxdy (67)

and propagating 4 to z0 + Az:

d1(k1, k2 , z0 + Az) = 1(k1 , k2, zo~e(i/2){kirZ+ z[1IDl(z)]dz+k2 zo+Az[lID2(z)]dz}

10
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The inverse transformation to Eq. (67) then yields cD, and Eq. (62) yields 4/(x, y,
Zo + Az).

NUMERICAL PROCEDURES

The phase function g(x, y, z) of Eq. (63) can be written more usefully in the form

g1 (x) + g2 (y) g3 (x, y, z) (69)
D1 (z) D2 (Z) VDD1 (z)D2 (z)

where

g1 (x) 1 - x2 , (70)

g2 (y)- 1 - y2, (71)

and

NN ~~X 2n 2
g3 (X, y, Z) - NkNce NaNkZ [ N- N\/I +N8NkZ)-Y1z] . (72)

This expression for g3 is found by substituting the new variables x, y, z, and ') into
Eq. (8). The phase integral

AO Afg(x, y, z') dz'

appearing in Eq. (62) can now be partially evaluated and expressed in the form

iZ g3(X' ,yZ)
AO =g 1 (x)AZ1 + 92 (Y)AZ2 -Z0 J D ( )DW d.z, (73)1 1 2 2 ,tZO /Dl(z)D 2 (z)

where

Z dz' = tn (1O i 2 z Z'Z
AZ1,2 J Dz = tanh-1 ({I + [2oe1 ,2(zo)]Z} 21 + 2a 2( (o)) (74)

The differential quantities AZ, and AZ2 are similarly named as the coordinate differ-
ential AZ that was used in earlier code calculations which involved only a single scaling
function D(z).

To complete the evaluation of AO, one must know the z dependence of g3 , that is,
the z dependence of 1DJ12. Two options are provided in SSPARAMA, for evaluating AO,
depending on whether one has determined VIjD2 at one or both of the integration

11
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endpoints. The procedures work as follows: Suppose first that the solution for 4/(x, y, zo)
has been obtained. Then one can compute g(x, y, zo), since 14)(x, y, zo)12 = I4(x, y, zo)12 .
To find 41(x, y, zo), however, one must evaluate

zo

where z' lies between zo and the plane zo + Az to which one would like to propagate 4.
If A/ is known only at zo, the zeroth-order approximation

AG' - g1(X)AZl + g 2 (Y)AZ2 - g3 (X,YVZ0 )AZ12 (76)

must be made, where

AZ, 02 z (77)
i\Z12 Z 2 J l('2(Z)

Equation (66) can now be solved for 4f(x, y, zo + Az) by the use of Fourier trans-
formations. Finally on performance of the phase integral

z0 +Az

AG" J g(x, y, z') dz' (78)
zo

(x, y, zo + Az) can be obtained from 4D(x, y, zo + Az). In keeping with the accuracy
with which AO' was approximated, AO" can be approximately evaluated as

Ao t g1(X)AZ' + g2 (Y)AZ' - g3 (X, Y, ZO + AZ)AZ'12 (79)

The differentials AZ1 , AZ", and AZ72 are defined by the integrals of Eqs. (74) and (77)
with the integration limits as specified in Eq. (78).

Suppose however that initially both 4(x, y, zo) and 4(x, y, zo) are known and that
the values of 4 at zo are to be propagated to the plane at zo + Az. In this case the
phase integrals defined in Eqs. (75) and (78) can be approximated using the integration
formula

X0+AX

f f(x)g(x)dx ; W1f(x0) + w2 f(x 0 + Ax), (80)
xo

which has first-order instead of zeroth-order accuracy. The weights wl and w2 are thus
determined such that equality will hold in Eq. (80) whenever f is a linear function of x:

- ~~~~2xo )f o +Ax 2 fo +
= (1 ax)fXO+A-g(x)dx - - xg(x) dx (81)

AX ~~~AX

12
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and

2 XO +Ax 2xo XO +Ax
W2 = J xg(x)dx - 2r g(x) dx. (82)

xo xo

Then, for example, in place of Eq. (76) one would have that

AO' ; g1(X)AZ'1 + g2 (Y)AZ2 - g3(x, y, ZO)AZ3 - g3(x, y, Z0)AZ4, (83)

where AZ'3 and AZ4 are related through Eqs. (81) and (82) to AZ'1 2 and an integration
over the function z/&/D7(z)DY2(Z):

_ _____ 2 O z'Idz'
AZ,- AZ 1' 2 J84

0- zo VD1 (z)D 2(z) (84)

and

AZ~~ ) [11 Z' dz' -z ZAZ ].(85)
4 ZO _ZO [ Nz/D I(z)D 2 W) -ZA1](5

Although integrations over D 1 and D -1 can be carried out analytically in terms of
inverse hyperbolic tangents (as in Eq. (74)), integrals over 1 /yii7D produce elliptic
functions. Both sets of integrations are handled in SSPARAMA numerically, with third-
order accuracy, using a second integration formula:

xO+Ax Ax
ff f(x) dx -2 [f(xo + Ax) + f(x 0 + AX2 )], (86)

xo

where Ax, (1 - 1&F/)Ax/2 and Ax 2 (1 + 1kl) Ax/2. Again, as an example, con-
sider Eqs. (84) and (85) and define

1
(87)

VD1 (z1)D2(zD ) (87)

and

1

V/DI(Z 2 )D 2 (Z2 ) (88)

where zj zo + (1 - 1/N/3)[(z' - zo)/2] and Z2 zo + (1 + 1/x3)[(zo - zo)/2]. One can
complete the numerical evaluation of AZ' and' AZ' by rewriting Eqs. (84) and (85) with
the use of Eq. (86), in terms of fi and f2 :

13
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AZ3 = 4)- Z() - [2) (89)

and

2 ) [(Z)o +( f)2]

= (4- zo)(t' 2 ) AZ3 (90)

The procedure by which Eqs. (80) through (90) are employed requires that two sets
of values of 4 be stored at any time by SSPARAMA. At the beginning of the propaga-
tion step described above, the two arrays contain the values of 4(x, y, zo) and 4(x, y,
4)), where zo < z' < zo + Az. At the end of the propagation step the values of
4/(x, y, zo) have been replaced by 4(x, y, zo + Az). These new values can then be used
to propagate 4(x, y, zo) to 4/(x, y, z4 + Az'), where now z4 < zo + Az < z8 + Az'. The
process of alternatively propagating one and then the other of the two arrays is repeated
until the focal plane, defined by the initial beam curvature, is reached.

Since both arrays are initially assigned the values 4(x, y, 0), the process of
propagating one array, past the other cannot begin until- after the first propagation step.
The first z step is therefore taken using Eqs. (76) and (79) to determine AG' and AO". In
general the incremental steps Az are selected in SSPARAMA according to a criterion that
the phase changes induced by g3 as computed from Eq. (76) be no larger than some pre-
assigned value of order 1 for all x and y. However, to carry out the first advancement of
41 at zo = 0, half of the initially computed Az value is used. This leapfrog procedure is
summarized for the first few z steps in Fig. 1.

The advantage conveyed by using Eqs. (76) and (79) to evaluate the phase integrals
AO' and AG" is that only one 4 array is needed in carrying out the calculation. Because
of the reduced accuracy in computing AG' and AG", however, smaller z steps are in
principle required to obtain the same results as when two arrays at different z planes are
used. To allow a quantitative comparison of these two procedures, both options for
propagating 4 were installed in SSPARAMA and can be selected according to the value
of one of the input parameters to the code. For the same reason, another input param-
eter is also available that allows one to adapt or not adapt the coordinate system to the
amount of diffraction or thermal blooming occurring during beam propagation.

PROGRAM OPERATION

This section will describe the input parameters required to run SSPARAMA and
explain the data included in the output. A complete listing of SSPARAMA is included in
Appendix A.

To use program SSPARAMA, two input cards are required. The first specifies cer-
tain numerical parameters and selects various program options, and the second defines the

14
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STEP 0 <
DEFINEMl'1 =W2.
PHASE CHANGE ',-01.
SET 1' =; 2 1= - %Nk.
AND SET fl=A o2'=A j30.

ZoO Z=AZ 0

STEP 1 |Ace.,,o!L 0
NOW FIND .,, 02, AND p
AND A.,, Aa2 AND AP.
USE TO APPLY PHASE
CHANGE 1W2(z=0)-D2(z=0.

STEP 2

STEP 3

... (

z=O z= z z=AZ+ Az, 

0,Ib FIND o, 02, AND , AND
A.,, Aa2 AND AP AGAIN
AND USE TO APPLY
PHASE CHANGE
WF Azv) *lAZO).

z=O Z=Az% Z==Ah+Azl Z=&zAz 1+Az2
I I Advance 0, TO Az. + Az,+ , I I .

I I
oj(I~zk) 1 02( '+ AZ,) FIND .1, , 2, AND,8

AND Az1, Az2, AND AP.
APPLY PHASE CHANGE
Y2( +Iz,)-, 2 1A{0+ A.1 .

Fig. 1-Leapfrog procedure for advancing the wave function ID

particular physical situation. This second card can contain the actual physical parameters
or a set of dimensionless parameters.

First Input Card

The parameters read from the first card are listed in Table 1.
of these parameters is as follows:

Table 1-Parameters Specified by the
First Input Card

A description of each

15

r-

CI

Columns [ Name J Format Columns [ Name [Format

1-5 PHIMXX F5.0 36-40 NPM I5
6-10 ROCULT F5.0 41-45 NBM I5
11-15 HXY F5.0 46-50 NPLOT I5
16-20 NXY I5 -51-55 NCT I5
21-25 NCW I5 56-60 NRS I5
26-30 NAD I5 61-65 NPUNCHI I5
31-35 NMS I5 75-80 NID A6
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PHIMXX. This is the maximum allowed phase change in radians for any point in the
computational grid at each z step. It is used to define the newly computed z increments
HZN at each step, where

g3 (x, Y, Z)max HZN = PHIMXX,

in which g3 (x, y, Z)max is the maximum value in the computational grid of g3 , given by
Eq. (72). PHIMXX is nominally entered as 1.0. If more z steps are required, PHIMXX
can be decreased. In this case the z increment is tied to the amount of heating in the
atmosphere, becoming smaller automatically as large density changes take place or
becoming large and efficient when near-vacuumlike propagation occurs. If HZN exceeds
0.1 of the total propagation distance, the smaller of these two z increments is used. If
HZN at any time is less than 10-7 times the distance to be propagated, the program exits
and an error message will be printed.

ROCULT. This is used when propagating uniform circular beamshapes with an obscuring
disk or a uniform rectangular beamshape. In the former case ROCULT is the ratio of the
occulting radius to the total radius. For a rectangle, it is the ratio of the y to the x
dimension. ROCULT is used only when NBM equals 4 or 5.

HXY. This parameter defines the size of the computational grid relative to the aperture
radius by

Ax = Ay = HXY

where Ax and Ay are the sizes of individual computational cells, which start out square.
Depending on the beamshape, values between 0.1 and 0.3 are typical.

NXY. This is the number of individual computational cells along the edge of the entire
computational grid. The FFT routine is more efficient when NXY is a power of 2, and
NXY is normally entered as 64.

NCW. This parameter permits CW propagation to be included by allowing the summation
in Eq. (72) to be replaced by an integral [7]. Before the summation is replaced, Eq.
(72) can be written in terms of physical parameters as

3N(y - I)k 2 Ep eCaz °°
2E 1 [x - n(vo + 2z)At, y, z] 12.

Cs 

This summation is performed when NCW = 0. When NCW = 1, the program is in the CW
mode, and Eq. (72) is replaced by

3N(y - 1)k 2 aPe-az f0 xy'

c 8
2 (vo + Q2z) J 14(x + X,)y, Z)12 dx',

16
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where P is the average power of a CW laser (P = Ep/At). The integration is performed
using a simple trapezoid rule.

NAD. When NAD = 0, the coordinate system adaption is not included. When NAD = 1,
it is included.

NMS. When NMS = 0, the midplane integrations are not used. When NMS = 1, they are
used.

NPM. When NPM= -1, the second data card contains physical parameters. When NPM=
+1, the second card contains dimensionless parameters.

NBM. This parameter selects one of the five beamshapes available within the program:

NBM = 0-Infinite Gaussian, with WIDTH (a parameter read from the second input
card) being the e-1 intensity radius;

NBM = 1- Truncated Gaussian, with WIDTH being the e-1 intensity radius, trun-
\ cated at /2 X WIDTH or e- 2 intensity radius;

NBM = 2-Uniform circular aperture, with WIDTH being the actual aperture radius;

NBM = 3-Uniform square aperture, with WIDTH being the dimension from the
center of the square to the edge (half-side dimension) in the x or y
direction;

NBM = 4-Uniform circular aperture and an occulting disk, with WIDTH being the
total aperture radius and, as stated previously, with ROCULT being the
ratio giving the occulting disk radius;

NBM = 5-Uniform rectangular aperture, with WIDTH being the half-side x dimen-
sion and ROCULT being the ratio giving the y dimension.

NPLOT. This determines the type and the number of plots given in the output:

NPLOT = 0-No plots;

NPLOT = 1- Final contour plot only;

NPLOT = 2-Final contour plot plus a plot of average intensity and peak intensity
versus z;

NPLOT = 3-Preceding plots plus a plot of flux and area versus irradiance;

NPLOT = 4-Preceding plots plus a contour plot of aperture intensity;

NPLOT = 5-Preceding plots plus Fourier-transform contour plots of aperture and
final intensity distributions.

NCT. This determines the contour levels used in the contour plots:

NCT = 0-Contour plots use contour levels with 10% increments;

NCT = 1-Contour plots use 3-dB contours (0.5f, n = 1, 2, ... , 10).

NRS. When NRS = 1, the final contour plot is corrected and standardized according to
an internal criterion, to remove the effects of different amounts of coordinate system
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adaption in the x and y directions. When NRS = 0, this plot can appear with nonuni-
form axes.

NPUNCH. This determines whether there is a punched-card output:

NPUNCH = 0-No punched-card output;

NPUNCH = 1-Punched-card output for later data processing.

NID. Up to six characters can be used to identify a run or a series of runs on both the
printed and punched output.

Second Input Card

The data contained on the second input card depend on the value of NPM. If NPM
= -1, the physical parameters listed in Table 2 will be read. A description of each of
these parameters is as follows:

OM. The slew rate in radians per second.

HT. The interval between pulses in seconds, or
the reciprocal of the pulse repetition frequency
(PRF). For CW propagation this should be set to
1 second.

ALPHA. The absorption coefficient a in km- 1.

ALPHAS. The scattering coefficient in km- 1 .
ALPHAS is used to compute the total extinction
but is not included in the absorption that pro-
duces atmospheric heating.

WIDTH. The aperture radius a in centimeters.
The particular definition is given in the preceding
subsection for each value of NBM.

WN. The wavenumber k = 27r/X or 27r/flX, where (3
wavelength in centimeters.

Table 2-Parameters Specified
by the Second Input Card

When NPM = -1

Columns __Name JFormat

1-5 OM F5.0
6-10 HT F5.0
11-15 ALPHA F5.0
16-20 ALPHAS F5.0
21-30 WIDTH E10.0
31-40 WN E10.0
41-50 VO E10.0
51-60 ENERGY E10.0
61-70 F E10.0
71-80 ZF E10.0

is the beam quality and X is the beam

VO. The wind velocity v0 in meters per second.

ENERGY. The individual pulse energy Ep in joules. For CW propagation ENERGY is
the average power in watts.

F. The focal length in kilometers.

ZF. The distance at which the calculation is to be stopped in kilometers.

As already shown, the propagation is a function of five dimensionless parameters.
Different combinations of the eight physical parameters, which are required to define
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these dimensionless parameters and which lead to the same values of the dimensionless
parameters, will produce identical results. In order that a unique physical situation be
specified, some physical quantities are also read from the second data card when NPM =
+1 (Table 3). They are not used to define the physical situation but rather to assign
units to the derived quantities at the end of the calculations. The quantities read when
NPM = +1 are:

Table 3-Quantities Specified F. Focal length in kilometers.
by the Second Input Card

When NPM = +1 HT. Pulse interval At in seconds (=1 second for
I I I CW).

PNA. The f number = WIDTH/F.

PNALF. Absorption number, ALPHA/F.

PNK. Fresnel number, WN -WIDTH 2/F.

PNO. Overlap number, 2X\- WIDTH/(VO * HT)
for an infinite and truncated Gaussian beam and
2 -WIDTH/(VO * HT) for all other beam shapes.

PNS. Slew number, OM -F/VO.

PND. Distortion number, 3Nk(-y- 1)afEp/c2a voAt.

PNZ. The ratio of the distance at which the calculation is to be stopped to the focal
length, ZF/F.

Examples of Output

A series of multipulse runs was made varying the pulse spacing and energy so that
the average power remained constant and using a number of average powers. The results
of these runs are shown in Fig. 2 in the form of power optimization curves. The CW
curve is included so that the convergence of the multipulse curves to the CW curve, as
the limiting case when pulse interval is decreased, can be readily observed.

To test the SSPARAMA code in the CW mode, some comparison runs were made to
check against some results obtained from Jan Herrmann of Lincoln Laboratory, who
studied the propagation of a CW infinite Gaussian with a e-2 diameter of 70 cm. The
absorption coefficient was 0.07 km-1, with no scattering. The laser was twice-diffraction-
limited DF with a wavenumber of 8.5 X 103 cm-1. Two cases were considered at focal
lengths of 2, 5, and 10 km. The first case had a power of 10 MW, a wind speed of 250
m/s, and no slewing. The second case had 2 MW power, a 2-m/s wind, and a 0.02-s-1
slew. The results, consisting of the area containing 63% of the focal-plane power and of
the peak intensity are summarized in Table 4. Arel and Irel compare these quantities
with those that would have been obtained if there were no thermal blooming. The results
for these highly bloomed cases agree within about 5% with those of Herrmann.
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1-5 F F5.0
6-10 HT F5.0
11-20 PNA E10.0
21-30 PNALF E10.0
31-40 PNK E10.0
41-50 PNO E10.0
51-60 PNS E10.0
61-70 PND E10.0
71-80 PNZ E10.0
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Fig. 2-SSPARAMA results (F = 1 km, diam = 70.7 cm
(l/e), a = 0.1 km- 1, k = 2966 cm- 1 , vo = 10 m/s, and

= 0.1)

Table 4-SSPARAMA Results for the Propagation of a CW Infinite Gaussian
With a Wavenumber of 8500 cm-1, an e- 2 Diameter of 70 cm, an

Absorption Coefficient of 0.07 km- 1 , and No Scattering

Focal Area A Relative Area Peak Relative Peak
Focal CotaiPeakrelIntensity IrelLength ConaiingAenselaivtT

Fength ; 63% of the Relative To Intensity
F Focal-Plane No Thermal Ipeak No Thermal

(kin) Power (cm2 ) Blooming W Blooming

First Case: 10 MW Power, 250-m/s Wind, and No Slew

2 57.6 20.3 147 0.0464
5 658 37.0 10.3 0.0251

10 3543 49.8 1.33 0.0184

Second Case: 2 MW Power, 2-m/s Wind, and 0.02-s-1 Slew

2 64.8 22.8 26.8 0.0422
5 474 26.6 2.96 0.0359

10 2018 28.4 0.495 0.0341

Another example of SSPARAMA output is illustrated in Fig. 3, namely, the final
contour plot for the 5-km run from the first case with 10% contour levels. The com-
plete printed output from SSPARAMA is included in Figs. 4a through 4c.

20



NRL REPORT 8074

C..

_I I I I
-59.e7 -29.9 0.0 29.9 59.7

X Cm

Fig. 3-Contour plot with 10% contour levels for the
5-km run from the first case in Table 4 (PNALF = 0.350,
PNK = 10.400, PNO = 0.002, PNS = 0.000, PND =
80.000)

Figure 4a, the first page of printed output, is almost self-explanatory. Both dimen-
sionless and physical parameters are listed; one is computed from the other, depending on
which was entered. The program options indicate the mode, either CW or MP and the
beamshape etc. The results summary in Fig. 4a includes the final value of the energy
conservation integral, Eq. (2). This quantity, which is ideally equal to 1, gives a quick
check on the validity of the numerical calculations. One factor that limits the accuracy
is the use of a finite mesh size. As this mesh is made finer, the intensity distribution gets
closer to the mesh boundaries, and numerical errors may enter through diffraction and
the use of a discrete Fourier-transform routine as energy is reflected off the boundary.
To avoid this reflection, the outermost boundary of the computational grid is set to zero
and the next outermost boundary is set to one half its value at each z step. Thus the
sum over normalized intensity gives an indication of how much energy was lost due to
boundary-value problems.

The area that is given in Fig. 4a is the area containing exactly 0.63 of the total flux
obtained by linear interpolation between adjacent flux fractional areas. This area will
include contributions from several peaks as the intensity pattern breaks up under severe
blooming conditions, so its meaning may also require a suitable interpretation of the
intensity contour map. In addition the relative area and maximum intensity are calcu-
lated relative to the focal area and intensity of a vacuum-propagated infinite Gaussian
whose e-1 diameter is equal to the value of WIDTH regardless of the beamshape being
propagated.

21



WHITNEY, MADER, AND,ULRICH
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KA * 0,000049 RADIUS(M) * 0'248 HY * 0,20
KALF * 0.350 4LPHA(U/KM) * O.U70000 Hy * 0,20

NA * 10,40 ((i/CM) * 8480.93 NY * 64
se * 0,00 eAs0) * 049*98 NY * A4
ND I 0,00 *w~n^Rs~osec) . U.0noo PHMXYx *.,oo
kc * oa00 ENERGY(K.J) * 10!20:69
h2 * F oMC 91KM) ;0000.

DTMSECI * 1.U00000
AIPIASfi/KM) * 0.oooflO

PROGRAP IPTIONS

MODE tw
OEAMSHAPE INFINITE GAUSSIAN
ADAPT1ON YES

HALFtSTEP INTEGRATIEN YES
PXNCIE0 CARD ELTPUT he

hUMBER OF PLeTS B
LeN LEVEL COKTOURS NO0

RESCALE FIINAL CONTOUR PLOT YES

THE CALCuLiTIONS REACHED Z ! 5:00000 (KM)

THE SUP OVER NORMILIzED INTENSITY M 1 c00000

THE NOMAER MF Z.STEP5 * 22

iAERAGE POWER (I0) EMItTED AT APERTURV * 104,0,694

AVERAGE TRANSMITTED POWER (KW) N 7343,339

AREA ISOCP) CONTAINING 0.63 8F PSWE * 607.995

A REL (RELATIVE TR INF, GAUSSIAN) v 36.982

AVERAGE INTENSITY (KW/SOM) tN TA1IS AREA a 7.031

PEAK INTFNSITY (KW/SOCM) * io.345

I REL (RELATIVE TO INF. GAUSSIAN PEAK) * 0.02507

Fig. 4a-First page of the output by SSPARAMA, containing the
input that resulted in Fig. 3 and a summary of the results

Figure 4b, the page containing numerical data, begins with a list of internally com-
puted quantities that relate to the problems of air breakdown and t-cubed self-blooming.
They are printed only for possible future data analysis. Assuming the breakdown
intensity at 10.6 gim is 3 X 106 W/cm2 and that this is inversely proportional to wave-
length squared, the following quantities are computed as a function of range: the mini-
mum area required for breakdown, the ratio of this minimum area to the vacuum area,
the maximum pulselength before breakdown occurs, the critical power, the saturation
time, the intensity produced by the critical power propagating in a vacuum, and factors
accounting for turbulence with values of C,2 of 10-15 and 10-14. This is followed by an
x and y slice through the aperture to check the initial beamshape.

The quantities, including the values of HZN in z/ka 2 units, relating to the coordi-
nate system adaption are printed at each z step. The headings D, DI, D2, ALPHA1,
ALPHA2, BETA1, DALPH1, DALPH2, DBET1, and XCEN correspond to D, D1 , D 2 , a1,
a2 , (, A(X1, AU2 , AA, and X used in the second section of this report. Also included is
EPSMX, the maximum value of the summation given in Eq. (72); PHIMX, the maximum
value of the positive phase change applied to k to obtain 41; and PARM, the number of
pulses, for the MP mode, that occur in 'a computational cell.

Figure 4c, the output data, lists in the top portion the area, flux, the area fraction,
and flux fraction contained within each contour level. From these data the 63% area is
interpolated. This is followed in the middle portion by the z locations of the maximum
of the average and peak intensities, the minimum 63% area, and the minimum z step that
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Fig. 4b-Second page of the output, containing numerical data

have occurred during beam propagation. Then in the lower portion the peak and average
intensities, the 63% area and the location of the peak intensity in centimeters are listed
at each z step.

Summary of Program Structure

When the half-step integrations are used, the solution is advanced twice before the
information at each z step is stored. This can be seen from the flow chart of
SSPARAMA (Fig. 5). Thus, when NMS = 1, the program actually used twice the number
of z steps that are printed and included points approximately midway between those
listed.

The structure of the code SSPARAMA is explained below and summarized in the
flow chart in Fig. 5.

* The call to subroutine START causes the input data to be read. The real part of
the 64-by-64 array 4, is defined according to the beamshape specified. Initially the phase
of this array is zero.
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'7 98 a o2

1 5200*003
2,7584*003
5,980i 1. 003

,7202.004
3J6826.004

TURRCRRI
1. 000nI'0000,0O0n.ooo9 I9 9 9 7 .a a
9 I9 9 61 . o 
9,90 -0oo1

S,7823.no0
9.351.not
2, 745.no I
4 s384 Col

2.4j'i8S.Da

TURB"AR2
1 *0000-000
9 I947.o0a

0 9378.001
9 6992,ooi8 99o'.o019,8067.001
7 s929.001
4,7625. 001
7, 099?3Ool
, 7 0.9 002

j,8711.oo2

0,0000 2 0.004
o,4949 '9.004
,493s5 08.004

0,4919 1.7.004
6 49n3 1.6.004

0,4867 6,5.004
0o o850 :4.4004
60,432 i.3-on'
n~ t t8i 2.On4

0479 i 2.004
n,4744 1:1.004
o 47 2 1.0-04

n '6i S8 -oo'
o,4705 0:1.005
c '^"4 7.6.00n
0,4793 7:2-000
0 48i9 7-o-on5
o,4052 6;.00:
e,4et 7,0.005.
n 4909 7,3.065
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**O 6UTPUT DATA *-.

AREA tLUL
(s0 CM) (KW)

8;78i1.00 8,6154(o2
ij756.o02 ±,60o0oo3
2',634.002 2,3204003
61o

39Oo
02 3,2744go3

5.795.002 ,2§14 53
7,200*002 4,9154hC3
9748v3002 5,7544no3
1;j77.o03 8,353+003
[7581,003 *69A0+003

826.00S3 ,126#003

MAXIMUM AV' I
MAXIMUM PEAK I.
MINIMUM 7RIA A
MtNIMUM AZ

IAVE
3,421
3,688
3,973
4,277
4,604

4,*970
5,361
5,792
6,274
6,781
7,430
8 ,260
e,320

10,786
12,922
19 727
18, t27
18,601
is 8 99
12,970
10,239
8,277
7,031

i63
1908j 802
1762;298

13!2, 439
1295 5,665
1V;0j431
0 a21527
970, 908
8482 033
7049; 16
677 -725

03; 984

27 6 36 834521 0
27t -, 68

2470; 12632ljQ08

509;300
627; 0 95

AREA
FRACTION
0,0556
0. 1111
0, 1667
0,2556
0,3667
0, 4556
0,6000
0, 7444
1, 0000
1,1 556

1. 873S-00
3 .841*001
2,741*002
2. 170-003

IMAX
5,308
5,719
6 152
6,608
7, 083
7,570
0,060
8,533
0,217
9 ,930

10,776
12,064
13, 519
16 ,24
20,3872S,:6111

32, 220
38 , 4S3
33, 563
21,360
16, 150
12, 452
10, 345

FLUO !RRADIANCE
FRACTION IKW/SOQCM)
0,1173 9,81i*000
0,2219 8,28.*000
0,31±9 8,806*000
0,4458 8,105.000
0,58o3 7,D53500
0:, 693 6,8268000
0,7836 6,067000
0,|861± 5.3S74.00 0
0,094S8 4,3S89.000
0,9704 3,902.000

AT Zi 3,3610000
AT Z: 3,610000
AT Z 1,008.006

XPGAK
0,000
0,0D0

0,000
I,00 *

0,000
0,000
o,o0n
0,000

.3,304
S3,112

.5,464
57, 636
7, 092

: 66 : 97 I

.5, 700

.5, 98
.5227

.3, 45i

.S, 460
5, 695

PP8AX

0;000
0,000

4;i43
3;972
3,812
3,664
3,528
0;,00
3S297
3:208
35:13

6,.186
6,327
6,576

3;469
3.7 03
ODOO0,000
0;000o0ooo

Fig. 4c-Third page of the output, containing the
remaining numerical data

* The initialization procedure continues with the call to INTENS, where the
aperture intensity is computed at each mesh point.

* The call to DENS computes the quantity g(x, y, z) given in Eq. (63) and then
applies the phase change given by Eq. (62) which converts 4, to (D. The first z increment
is also computed.

* The main program loop begins here with a call to OUTPUT to store various
values until the calculations are completed.

* The call to ADVANCE applies the Fourier transform of Eq. (67) and then the
phase change of Eq. (68). The array is Fourier-transformed back to yield 4)(z + Az).

* The intensity is computed with the call to INTENS, and the boundary values of
the array are tapered to zero.

* The call to DENS now includes a call to VTRANS, by which the phase change
of Eq. (62) is reversed, converting () back to 4. The quantities {a1 , a2 , B } and
{AU1, Aa2 , AP} are found in VTRANS, and the values of D1 and D2 are updated.
After the return to DENS, Eq. (63) is solved and the phase change of Eq. (62) is reap-
plied, converting 4 back to (D in preparation for the next call to ADVANCE.
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LEVEL
0. 90 00
o;sooo
0, 7000
Os0 000

0L4000
0, 30000,0 00

2

0,224
0,44?
0,655

1,068

1,475
1,672
1, 872
2,073
2,277
2,48'

3 i134
3,369

4,142
4,435

5,000::43f
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CALL START CALL ADVANCE

* READ INPUT CARDS * CHANGE 4, TO K SPACE
* DEFINE qI * ADVANCE (DI
* INITIALIZE CONSTANTS * BACK TO REAL SPACE

CALL INTENS

* GET INTENSITY
*APERTURE INTENSITY.

CALL DENS _ Lv
CALL DENS * MP SUMMATION CALL VTRANS

* MPSUMMATION * ZINCREMENT * o1 og4 1
* FIND INITIAL Z INCREMENT * r +'2 * ADAPTION
* PHASE CHANGE 'I' -÷4

t r g Z ~~~~~LESS NO

CALL OUTPUT FINAL

* STORE CURRENT VALUES \

>'j<M~~~~~~S= 1

/ DID \-E
THELASTZ

STEP TAKE LESS THAN CALL ADVANCE3TIMESTHETIME NODVNE )YES TH~~~t NO ~* ADVANCE ~2 -
EMAINING'

VS | ~~~~~CALL INTENSl

IS

| CALL DENSv _
| *~Z INCREMENT CAL VTRANS

§~~~q I - 41 0 4o1*2 -+ q2
r *~~~ ADAPTION

Y:ES g Z LESS
YES THAN 

FIN

CALL OUTPUT
* PR INT R ESU LTS -4
* DRAW GRAPHS

Fig. 5-Summaryr of the code SSPARAMA
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* Now that one cycle of propagating the solution is completed, the code checks if
z final has been reached and if the half-step integrations are to be performed as outlined
in the section titled Numerical Procedures.

* When z final has been reached or the time limit of execution is near, the last
call to OUTPUT prints the results and ends this run.

The Appendix contains a complete listing of the code with copious comments
included.
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APPENDIX A
Listing of Code and Comments

PROGRAM SSPARAMA
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON /999/ A1(64964), A2(64,64), ITENS(64964)
COMMON /AAA/ EPS(64964),EPSO(64964),AOUT(11999),BOUT(9,l0),
* AIN(2964),[)ALPHI(2) I)ALPH2(2),GLbETI(2),ALPI110(2)8ALPh20(2)9
* BETD)(2). DlE)(2), D20(2) R()D10(2), RD2fl(2), SRTD10(2), XCENO(2)

COMMON /BBB/ TENS(64964), GI(64), G2(64), PHIASEl(64) PHASE2(64)9
* CONMIN(IO) ,M2(3) SV1(64) SV2(64) PARM(8C)

COMMON /SINGLS/ F9 PNA, PNALF, PNK, PNO, PNS. PNDi PNZ, HX% HY,
* HZ, Z, ZZZZF, ZNM. ZFINAL. XZERO YZERO, WIDTI- ALPHAj WN.
* VODTs OMDT, HT, ENERGY, ALPHAC, CS, REFRAC, GAMMA, FE-_ CTK,
* EJTKJ. RHT, POUT9 DARFA, ';2t TS, TPULSEt A52,PCR.SITCOR1%TCOR2t
* Z1 RI63MXi Z2, RIMXMX, 139 APMN, Z44 HZMNo OKARELA TENSMX0

* EX. PlIIMX, EPSMX, ERRMXt DGMX. Rs E4DIMAX, VTERM, PHIMXXHZNMS9 14
P1l I'AX JliAXq NX9 NY, NAD, NX2, NY29 NXY, NXDI,' NYDIM. NPT.

* IPLOTNITERNBLJFN\XMNYMNMSNFLAGDDl,[)2,PlP2,52TDI9SRTD2M
* RSRD12,XCENTLASTSOIRT89P,'Pl)3,Ct-CNO,6COtN\EUlHCZlCHCZ2OHCZl'N\
* HCZ2NFHCZ12,ALPHlALPhl2,BETlICCN1,CON2,HZOHZNEXOEXN..Tle,1T2

COMMON /OUTS/ NB^1JSCLFACNRS?,NP.,"1NCWNEXITNPLUT3,NPUNCFI
C* * ;. *'- * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMPLEX A19 A2
LOGICAL LS
DATA (CS=34!600.J), (REFRAC=0-154), (GAMMA=1.4), (ETJ=1lOE-7).

* (CTK=1.OE-5), (PI=3.14159265)9 (BIDI=3.CF6), (EJTKJ=l.OF-3)
DATA (NXDIV=64)9 (NYDINi=64)9 (NZ=70)
SANK,( I),/999/

C
C INPUT AND INITIALIZATION
C

TSTART=TIPE-LEFT(iUMN'Y)
LS=.FALSF

55 CON' T I NUF-
CALL START(LS)
NEXIT=C

N I T ER = (.

IPLOT=,

ZZ2=0J.(.
12=2
IF (NMS EO. O) I2=1

CALL INTFNS(Al,.FALSE.)
CALL DENS(A19 A1 ZZ1 1, 1 tALOF.)HZO=O .

C

C kAAIN PRCGNA?' L.O(P
C
14 CONTINUE C

NITER=?ITER+1
C
C STORE VALUES FOR LATER PRINTOUT
C
2 CALL OLJTPUT(.FALSE.)
C
C IF TIME REMAINING IS LESS THAN 3 TItES THAT FOR ThE LAST
C Z STEP - EXIT
C
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3 TNOW=TIMFLEFT(;I)
DT = T LAST- TNOW
T LAS T T N OW
IF(3*DT.LE.TNo.)') GO TO 8
PRINT 22,Z

22 FORMAT(//25X25H*** TIME APORT AT Z(Kl 1 =F.5,lX3rl***//)
GO TO 13

8 CONTINUE
C
C ADVANCE FROM ZZ TO ZZ+DZ, CALCULATIN6 NEL A l-LIIUljS IN A
C
40 CALL ADVNCE(Al,1)

CALL INTFNS(A1, *FALSF.)
CALL DENS(Al, A2, ZZ1, 1, 12, *TRUE.)
IF (Z *GE. ZFINAL) GO TO 15 C

C
C REPEAT IF HALF-STFP INTEGRATION IS INCLU:iLO
C

IF (NMS *EU. () GO TO 45
CALL AOVNCE(A2,2)
CALL INTENS(A2, *FALS[.)
CALL DENS(A2, A1, ZZ2, 2, 1, *TRUF.)
IF (Z *GE. ZFINAL) GO TO 15

45 CONTINUE
GO TO 14

C

C
C SET NEXIT EOUAL 1 FOR PRENATUkr EXITS
C
13 NEXIT=l
15 CONTINUE
C
C FXECUTE ALL OUTPUT
C

CALL OUTPUT(CTRUF.)
PRINT 16

16 FORMAT(1HI)
17 CALL STCPPLOT

C PRINT RUN TItRE (CP TIME)-
TRUN=(TSTART-TIl-tLLFT(I.lu,.Y))/51:*
PRINT 18,TRUN

18 FORMAT(//,16(1li*),* RUN TliF.=*,F6.2,* LINUTES*)

STOP
FND
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SUBROUTINE START(LS)
C
C THIS SUBROUTINE READS THE INPUT PARAMETERS AND D)EFINES
C THE APERTURE [)ISTRIBUTION PSI (OR A). MANY QUANTITIES ARE
C INITIALIZFD HERE FOR LATER USE.
C
C ** * *** ** * **F* ** ** ** ** * *** * ** ** ** * * C * * *;F* F* * 'F**# * * **#* *;F** ****iF;** * * * *** *'F*# * * * * * **
C

COMMON /999/ Al(64,64), A2(64,641, ITENS(64964)
COMMON /AAA/ EPS(64,64),EPSO(64,64 )AOLJT(11,999)1BOUT(991U),

* AIN(2,64),I)ALPH1(2) ,0ALP112(2)F:,) T1I(2)ALP!I10(2),ALPH20(2I)
* BETIO(2 ), D10( 21, 0D201(2) RD 1O2) ( RD2() 2), SRTD10(2) , XCENO(2)

COWM1ON /BBH/ TENS(64,64), GI(364)1 (32(64), PrHASEC(64 ) PHASF2(64),
* CONMIN( 1(t1M2(3),SV1(64),SV2(64),PARM( 80 )

COMMON /SINGLS/ F. PNA. PNALF. PNK, PiNO, PNS, PNI, PNZ, HX, HY,
HZ, Z. ZZZZF, ZNM, ZFINAL, XZERO* YZERO U , WIDTh, ALPHA, wN.,

* VODT, OMDT% HT, ENERGY, ALPHAC, CS, REFRAC, GAMMA, ETJ, CTK,
* EJTKJ, RHT, POUT, DAREA, W2, TS, TPULSE, A52,PCRtSITCORlDTCOR2t

Zi, RI63;MX, Z2, RIMXMX, Z3, AP;'Nq, Z4, HZt-LN, DKAREA, TENSMX,
* EX9 PHIMX, EPSMX, ERRMX, DGilX PR1, t}DIMAX, VTERM, PHIMXX,HZNMS , 14

PI, ItlAX. JMAX, NX, NY, NA0), NX29 NY2, NXY, NXOIM, N.YDIM, NPT,
IPLOTNITERbN!BOF NXiMNYMN'.iS i,4FLA(GEDl ,D2,PlP29SSRTDi ,SRTU2,
RSRD12 XCENTLAST SliRT8,PiND~if ,COO ',(CUtI,,HiL)I ,riCZ 10 ,CZ20,HCZIN!
HICZ2N9HCZ129ALPtillALC)h29(B'T19CvlNliCU.N2HZHZdtZNPEXCgEXN9'*.~'l'lt'iWT2-

COMMvONl /OOTS / NUNMSCLFAC ,.'R'iG, wri: ,,'N(:!J, GEX IT , PLUT , N PUN\CH
COM\ION/OUTS/N ID

C

CORPLEX Al, A2
LOGICAL LSt Li, LT

01 iENS I ON I P!R (64)
DIM,:ENS ION PhtJF( 512), PV( 64)

C
C INPUT AN') IITIALIZATIO'N

DTlJNUiF(DU):'Y)=( 1-.J-71'Pi')*+C (ZN.!/FP'lK)*~2I) F(i.C+i.133'jDSn'3*.i 'L0ITH7
* UI!)TH*;CTK*I (PI*0 Il;D~ Y*| :; '''*Z'; ^C-)-:*4'.C*i )i:4'(5./5.) 11)
CALL PLOTS lPflF',5i2,1)
SCLFAC=1. t;

IF (LS) (G) TO 3'

C *******F*; 7*F**-*:;7-F**'. :: -i. : -"-F**** ;~-**-:' .~- *'4 1t r~-C* ':;*':-: >-*C ** ;*;- ;: ;Fi* #***iF**** ' 

C
C READ INPUT DATA - PRo(RA- OPTIO,-S
C
C NC W = 0 - MlILT I PULSE "ODE
C NiCW = 1 - CY MODE
C NAD = O - NO AUAPTION
C WEtS = o - NO HALF STFP INTEGRATIONS
C N*PM GT - READ IN l!PENSIONLFSS PARA.EIFTERS
C NPM LT 0 - READ IN PHYSICAL PARA,1E-TERS
C PBM 0= ( - INFINITE GAUSS IAN
C NbM = 1 - TRUNCATED GAUSSIAN
C NBM = 2 - UNIFORM CIRCLE
C NBM = 3 - UNIFFORM SQUARE
C NBM = 4 - UNIFURI; CIRCLE WITH ROCULT OCCULTED RADIlJS
C NPLOT = ; - NO PLOTS
C NPLOT = 1 - FINAL CONTOUR PLOT (,NLY
C NPLOT = 2 - ABOVF + I VS Z PLOT
C NPLOT = 3 - ABOVE + FLUX AND ARi-A VS IPRA)IANCL.
C NPLOT = 4 - ABOVE + APERTURE C(NT')lU PLOT
C NPLOT = 5 - ABOVE + FOURIER Tl'ANSFC'R,' (:0fiTTUUN PLUT oF APERTURE
C AND FOCUS
C NCT = ;' - 10 PERCENT CONTOUR LEVELS
C NCT NE U - LOW CONTOUR LEVEL OPTION
C NRS = G - DO NOT RESCALE FINAL CONTOkR PLOT
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C NPUNCH = u - NO PUNCHED OUTPUT
C NID IS AN ID NUMBER READ IN A6 FORMAT
C
C FOR GAUSSIANS - WIDTH = l/E INTENSITY RADI'US
C FOR UNIFORM APERTURES - WIDTH = RADIOS OR HALF SIDE DIMENSION
C

READ 1, PHI MXXROCULTHXYNXYNCENAONMSNPMNE.'§NPLOT,
1 NCTNRS,NPl)NCHNID

1 FORMAT(3F5.0qlk!I5,9XA6)
HX=HXY
HY=HXY
NX=NXY
NY=NXY
IF (NX-GT.NXDIM) NX=NXDIM
IF (NY.GT.NYDIM) NY=NYDIM

C
IF (NPM.LT.0) GO TO 23

C
C READ IN DIMENSIONLESS PA!RAMETLRS
C
C F=FQCAL LENGTH IN iKM
C HT=PULSE INTEVAL IN SEC ( =1 SEC FOR Cw)
C PNA=WIDTH (1/E INTFNSITY RADIUS)/F
C PNALF = ALPHA/F
C PNK = K * A**2 / F
C PNO = 2 * A / (V DT) ( DT = 1 SEC FOR CW' I
C PNS = O.1EGA * F / V
C PNI = E * K * ALPHA 3 N(I ANA-1 I / (V 1)T * f F CS**2)
C PNZ = Z FINAL / F (F0R DFEC;ti C I Si Si
C

READ 2U , FHiT, PNA, PtALF, PNK, Pt'(), HtiS, PiND, PZ
20 FORMAT)2F5.SC,7E-1,.i)I

F=F*I *E+5
I% I DT'i=PN!A*F
ALPi!A=PNAL F/F

ALPUAS=(, *0
_,'N=PNK/ ( F*PhA*PNA)
ViOlT=2 * :'*! I I lTH/Ptvj
(:'l) T =2* .*PO*ptsw 10Th / I EPP.C I

V.'=VCDT /HT
OL!=(''DT /HT

ENFFLO'=CS*'CS*'F;IUTH/(I FRh ECF3-.C COF(A P1A-1 .01))
FPlrD.=2 * C*pPMl-)*FA/ ( P:*PNlF~~K*I'AlL) )
O.CON = PNirV PtAL F-PZ:.: iF )'NK /W' A.
ELr R Y=Pt!r0*:rFFLO-i I l)Tt1~' I i Tri" ETJ
ZF=F*>PN7

GO TC 26
C I
23 IF (NPM-GT.;i) GO TO 26
C
C RE:AD IN PHYSICAL PARA!I'Ti RS
C
C OM= OMlEGA IN RAPIAtS/SEC
C HT = PULSE INTFRVAL IN SFCONDS
C ALPHA= ASFORPTIONI IN 1/KR,
i- ALPHAS= SCATTERING IN 1/Kwl
C WIDTh = l/E INTI-NSI TY kAD U,10 IN C.M
C WN = 2 ; PI / LAMBDA IlN 1/ CS'
C Vo= WIND SPEEfD IN Ml/SEC
C ENERGY = ENER(GY IN JOIJLES
C F=FOCAL LENGTH IN K'i
C ZF= Z FINAL IN KMl
C

R'AD 24 ,Ot,,HTALPHAALP)IAS',:I .)TI ,m. NV\,JE NEi RGY ,F ,ZI
24 FOR.lAT(4F5.;t,6EI1.,')

VS)=VJ)*l ('.
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F=F*1.E+5
ZF=ZF*1.E+5
ALPHA=ALPHA*1.E-5
ALPHAS=ALPHAS*1.E-5
V^DT=VO*HT
OMDT=OM*HT

PNA=WIDTH/F
PNALF=IALPHA+ALPHAS)*F

PNK=WN*WIDTH**2/F
PNO=2 .l*WI DTH/VO)DT
PNS=OMD)T*F/VUDT
ENFFLD=CS*CS*WIDTH/(RFFRAC*3.0*(GAMNMAA-1.0)
PNDO=ENERGY/IENFFLD*tWIDTH**2*ETJ)

GCON0=3.*REFRAC*(GAM.MAA1.)*WN**2*ENERGY*ALPHA*1.E+7/(CS*CS)
PND=3.*REFRAC*WN* (IGANMA-l) *ALPHA*F*EtEI<GY*1. E+7/

1 (CS*CS*W I DTH*Vi;DT)
PNZ=ZF/F

26 IF(NCW.EO.1) HT=1.
c

c

C PRINT INPUT PARAMETERS
c
3 D CONTINUE

PE=ENERGY/lt(¼.
PV'=V,!/ 10" *
PALFS=ALPHAS*1*E5
PALF=ALPHA*1.E5
P=V=WI IDTH/10O.
PF=F/1.E5

c
PRINT 43,NIiD

41 FGRNiAT(7DX,iA6q9//
PRINT 449

4 4 FOR.AT(I(.X27H*** ,.IFPHISTC) It:PIUT DATA *** //
15X*DItSiENSIO:,L-FSS i'ARAIelTEN.i , 6X,*PrIYSICAL PkAA';ETtRS*
25X*NUER I CAL PARA'-T E /RS41/I

PRINT 1 ', PLAP/,l,HX,
iPNALF ,PALF 11Y,
2 P N.< 9,l;N ,i!X ,
3 P NO , PV, Y ,
4PNS ,9(',
5PNND ,gPEf
6PNZs, PF,
7HT9
8 PAL FS

100 FORMAT( 1X4hNA =F -.69I)XI IHRA IA' IPIS =F10.3,1'X4hHX =F5.2 /
18X6HNALF =F1(*.3, 8X13UALPHh1 /K.1) =F-1L.-6,liX4HI Y FF5.2 /
21CX4HNK =FI:'.2,12X9HK( 1/CMI) =F1-.2,1OX410NX =15,/
31J:X4HNO =F10.2,13X6HV(I"/S) =Fll*.2,1l.0X4HNY =IS,/
410X4UHNS =Fl.*2, 5X16HO.,EGA(RAD/SFC) =F1-.4/
51;X4IHND =F10.2,. 9X12HD4[-NLEbY(KJ) =F10.2,/
61KX4hNZ =FI'O.4,14X71iF(KM) F'1O3,/
736X9hDT(SEC) =F1".6,/
831X14HALPHASI1/K'M) =FlO.6,//)

PRINT 147
147 FOR!AT(5X*PROGRA4 QPTIULS*/)

IF (NCV.EO.FQ~. PRINT 166
IF (NCW.FQ.l) PRINT 167

166 FCRMAT ( 25X4HMODE5X2HMP )
167 FORMAT(25X4HMODE5X2HCV)

IF (NbM-EQO. ) PRINT 148
IF (NtHM.E1Q1) PFRIiT 149
IF (NtM.EQ.2) PRINT 150
IF (NL.-EQ.3) PRINT 151
IF (NdM.EO-4) PRINT 168,kOCLJLT
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IF (NAD.EQ.O) PRINT 152
IF (NAD.EQ.1) PRINT 153
IF (NMS.EQ.Ol PRINT 154
IF (NMS.EQ.11 PRINT 155
IF (NPUNCH.EO.*() PRINT 156
IF tNPUNCH.EQ.l) PRINT 157

.PRINT 158, NPLOT
IF (NCT.EO.O) PRINT 162
IF (NCT.NE.O) PRINT 163
IF (NRS.EO.O) PRINT 164
IF (NRS.NE.O) PRINT 165

148 FORMATI2OX9HBEAMSHAPE5X*INFINITE GAUSSIAN*)
149 FORMAT(2oX9HBEAMSIIAPE5X*TRJrI'CATFD GAUSSIAN*)
150 FORMAT(2DX9HPEAMSHAPE5X*UNIFURM CIRCLE*)
151 FORMAT ( 2OX9HBEASHAPE5X*UN I F(ORM SOUARE* )
152 FORMAT(21X8HADAPTION5X2HNO)
153 FORMATt21X8HADAPTION5X3HYES)
154 FORMAT I 8X21H11ALF-STEP INTEGRAT IlN5X2HNO)
155 FORMAT(8X21HHALF-STFP INTE(RATIQN5X3HYES)
156 FORMAT(lCX19HPUNCHED CARD LOJTPUT5X2HNO()I
157 FORMAT(IOX19HPUNCI-ED CARD O(!TPUT5X3FHYFS)
158 FORMAT(14X15HNUlJ'BER OF PLOTS5XI3)
162 FORMAT(1lXl8HILOW LEVEL CONTOURS5X2HNO)
163 FORMATI11X18HLOt! LEVEL CONToUKS5X3HYFS)
164 FORMAT(3X26HRESCALE FINAL CLNTOUR PLOT5X2H[\,O 
165 FORMAT(3X26HRESCALE FINAL CO(NTOUR PLOT5X3HYES)
168 FORMAT(2DX9UBfFAMSHAPE5XtJNIFOQRNi CIRCL.E - OCCULTED RADIUS =*F5.2)
C

C
C nEFINE AND STORE COM,\,PARATIVF PHYSICAL DATA
C

C13=1 .U/3.0
W2=WIDTH*WI 3DTH
W^L-(2,l*PI/WfNJ*l..'F4
BD I='0D1* 11,-. 6/W'!L) **2
RHT=1 .u/HT
POUT=ENFRGY*XHT*EJT'<J
DAREA=fHX*HY
CAS=SORT (ALPHA*F*F*EflEGR(.Y;3/ 9 . :'-6*( IP It'liT-,z0I).*2I)
CTP=3.,.F-3*SQRT(IW2/(ALPHA*F'*'-*IlNFERGY)
CPCR=( 3.0F-P*d''I*HDI/ 7 (iGIA- 1 *ALPHA*F*) )I **Cl3*RhFT*PlI* 2
ZFINAL=ZF*CTK* i.999999
7ZF=PNZ/PNK
TPULSE=HT
NP=10

C
00 54 I=1,NP

ZNM=FLOAT(1-1)/FLOAT(NP-1)+1.OE-3
ZETA=ZN!'/PNK
Z =ZN' 1*.F*CTK
D=ZETA*ZETA+(1.V:-ZN>1)**2
AV=W2*D
EX=EXP(-PNALF*ZNl'
SREX=SCRT(EX)
AS4=CAS*ZNiY*SRFX**3
A52=SORT(AS4)
AR=AS2/AV
PCR=CPCR*AS4**C13/EX
TP=CTP*A52/(ISRFX*ZN!'+1. O-60)
TPULSE=Al'IN1(TPULSE,. TP)
TS=PCR*TP/POLUT
51=0.75*PCR*EX/( PI*AVI
IF (Z *NE. Utij GO TO 10
TCORl=1.0
TCOR2=1.k,
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GO TO 12
10 DTURBl=DTURBF(1.OE-15) -

TCOR1=D/DTURB1
DTURB2=DTURBFI1.OE-14)
TCOR2=D/DTURB2

12. CONTINUE
BOUT(11,)=Z
BOUT(2,I )=A52
BOUT(3,1)=AR
BOUT(4,1I)=TP
BOUT(5,1)=PCR
BOUT (6,1)=TS
BOUT(7,1)=1S
BOUT(8,I)=TCOR1
BOUT(9,1)=TCOR2

54 CONTINUE
C
C*t**************~*****;********~**** ***;F ****(F***IF1***F*********;****************
C
C DEFINE INITIAL AMPLITUDES AT APERTURE
C
C TRUNCATED OR INFINITE GAUSSIAN
C UNIFORM CIRCLE OR SQUARE
C
C TRUNCATED GAUSSIAN IS TRUNCATLD AT 1/E INTENSITY RADIUS
C OR R(TRLJN.)=1.414*A
C

XZERO=-(INX-1)*HX/2.
YZERO=-(NY-l)*HY/2.

NXM=NX-1
YNYm=tly-1

OKAREA= NX* NY *IlARFA
DO 64 J=1,NY
Y=(J-1)*HY +YZERO

G2(J1=1.0-Y*Y
DO 64 1=19NX
X=( I-l)*HX+XZLRO

IF IJ *ED. 1) G1(I)=1..O-X*X
SSQ=X*X+Y*Y

C
C DEFINE GAUSSIAN A'iPLITUDE
C

IF (NwM'-G~.2) G0 TO 31:(;
RFAL=EXP(-O.5*SSQ)

IF ( NUM.E.- 1.AN).SSO.GT.2.0) RE-4L=0.o
GO TO 350

C DEFINE UNIFiF-?M CIRCLE ANPLITUDE
C
3001 IF (NbM.GT.21 GO TO 310

REAL=1 .'
IF (SSQ.GT.1.(I) REAL=w-.U
GO TO 350

C
C nFFINE SQUARF APERTURF
C
31( IF (NBM.GT.3) GO TO 320

IF I(At'S(X) LE.1.iPANO.AiS(Y) .LL.1-.P,.ND.NUM.EO.31 RtAL=l .)
IF (ABS(X).*GT.l1.uOR.ASI(Y)-IGT.1.DO.Ari'NitM.FU.3) iREAL=O..
GO TO 35r

C
C DEFINE OCCULTED UNIFORM CIRCLE
C
32 0 REAL=1.!:

IF (SSO.GT.1. 0 ) REAL=(.'-
IF (SQRT(SSI).LE.R0CLJLT) REAL=i.0
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C
C LOAD INITIAL ARRAY
C
350 CONTINUE

Al( IJ=CMPLXIREAL,0O)
64 CONTINUE

C
C FIND NORMALIZATION FACTOR
C

CALL INTENSIAl, *FALSE.)
RNORM=u.o

DO 66 J=1,NY
DO 66 I=lNX

RNORM=RNORMl+TENS(IJ)
66 CONTINUE

RRNORM=1.O/SQPT(RNORM*DAREA)
C

C
C INITIALIZF CONSTANTS AND PARAMIF:TERS USED LATER IN PROGRAN
C

NBUF=2!0NXDIM*NY
NXY=2*NXDIM*NYDI M

NY2=NY/2

PV(1)=2.0*Pl*(I-I)/(PiX*HX)

ILU=NX2+1
DO 70 I=ILO,N'X

PV( I )=2.(*PI*( I-1-NX)/(INX*HX)
70 PV( I )=Pv(I l )*PV( I)

DO 72 J=1 ,Y
PHASE2(IJ)=C,. 5*PV(J)

DO 72 I=l,NX
C
C NOR.'ALIZE AMt'PLITUOS'r IN THIS LOOP

All IJ)=RR<Gt0';-A1IJI
A2 ( I ,J I -A1 (II ,J I
FPS(IIJ)= I'
IF (.J .EO. 11 PHAS*i-III =tl.5*;'V I

72 CONTINUE
DO 74 J=1 ,NY

74 EPSO(l,J)=C.';
C
C STORF X AND Y Sl ICE'S AT APERTUJRE:
C

IpX=NX/?
IPY=NY/2
DO 42tC 1=1,64
AIN(1,I)=Al (IPXqI)

42C AIN(2, I)=A1 (I ,IPY)
C

RI 63NIX=0.0
R IMXXMX=0.0
APMN=1 *.ElC
HZMN=1 *.0FlCi
HZ=O-O
CON1=0*5*(1l.: -1.( /SQRT(3.()) )
CON2=0.5*(1.+1*Ul./SORT(3.0))

M2(1)=LOGF(I.*NX)/LOGF(2.)+O.5
MA2(2)=LOGF(1.*PtYI/LOGF(2.)+,,o5
M 2(31=( 
CALL SETUP (:,M2,SV1,SV2,0,IFERR)

C
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C DEFINE CONTOUR LEVELS
C -

IF INCT.NE.O) GO TO 210 -

CTLVL=.9
DO 200 1=19G
CPNMINII)=CTLVL

200 CTLVL=CTLVL-.1
CONMINI10)=0.05
GO TO 250

210 CONMINI1)=0.50
DO 220 1=2,10

220 CONMINIII=CONMINII-1)*O.5
250 CONTINUE

TLAST=TIMELEFT(O)
C
C INITIALIZE PROGRAM PARAMETERS
C

Z=D.0
ZZ=0.0
HCZlN=J.U
HCZ2N=0.0

Z NM =0-

D=1.
D2=1.0
SQRT8=SoiRT(8. )

DO 80 I=1,2
010(111=1 .
D201( 1 ) =1 .C
RD10(1)=1.*
RD20(1)=]*0
ALPHiO(I)=-I'.5*PNK
ALPH2U(I )=-'0 *5*PNK
BET1'iL I )=
SRTD1)' ( I ) =1.0
XCFN$I( I .5
DALPH1( I ).-
DALPH2 (II ) =.O
DBET1(I)=')u,

80 CONTINUE
SRTD1=1*.0
SRTD2=11 *0
RSRD12=1-0
NFLAG=U

C
C
C PLOT INITIAL INTENSITY DISTRILiTIU('N AT APERTURE
C

IF (NPLOT-LT.4) GO TO 260
CALL SYMBOL(1.0,8.5 ,j 143l3hZ = L9i.s3)
CALL NUMBER((I.36,8.,,u.14,L,.).C,4HF8.5
CALL SYMPOL(1.32,8.C,)'.14,4H KM ,.09,4)
CALL LABEL( O.",4.0y
CALL PLOT(2-59,>.09-3)
XCENTER=5.C
CALL SYMBOLIXCENTER,5.GO.1493,oi.,)-1 )
XMNIN=XZERO*WIDTH
YMI N=YZERO*WIDTH
CALL TOPOGRAF(TENS,NXO IM ,NYDUIt',iNX XNY 0.,').*.0,11ll0. ClO.OITENSi

1 XMINHX,4HF6.1,4HX CM,+4,YMIN,HY,4HF6.1,4HY CM,4)
2 60 RETURN

END
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SUBROUTl'NE ADVNCE(AtNS)
C
C THIS SUBROUTINE FOURIER TRANSFORMS PHI(XY#Z) TO PHIIK1K2,Z),
C AND ADVANCES THE SOLUTION BY APPLYING THE PHASE CHANGE
C
C pHI(K1,K2,Z+HZ)=PHI(K1,K2,Z)*EXP1.05*1*(Kl**2*HZ/O13+K2**2-Ar.,'/O2))
C
C AND THEN TRANSFORMS BACK TO REAL SPACE
C

c** * * * * * * * * *** * * * * * * * * * * * * * * * * * * * * * * * *

COMMON /AAA/ EP5164,64),EP50164,64),AOUT(11,99),BOUTI9,10),
. AIN(2,64),DALPH1(2),DALPH2(2),DBET1I2),ALPH102) tALPH20(2),
* BET10(2), D1()12), D201,2), RD1012), RD2012), SRTD10I2), XCENO02)

COMMON /BBB/ TENS564,64), G1164), G2164), PHASE1I64), PHASE2164),
. CONMINI1O),M213),5V1164),SV21641,PARMI80I

COMMON /SINGLS/ F. PNA, PNALF, PNK, PNO, PNS, PND, PNZ, HX, HY,
* HZ, Z. ZZZZF, ZNM, ZFINAL, XZERO, YZERO, WIDTH, ALPHAi WN9
* VODT, OMDTv HT. ENERGY. ALPHAC, CS, REFRAC. GAMMA, ETJ. CTK,
* EJTKJ, RHT. POUT. DAREA. W2, TS, TPULSE, AS2,PCRSITCOR1,TCOR2.
* Z1, R163MX, Z2, RIMXMX, Z3, APMN, Z4, HZMN, DKAREA, TENSMX,
* EX, PHIMX, EPSMX, ERRMX, DGMXo R1, FiDIMAX, VTERV, PHIMXXHZNMS,
* PIl IMAX, JMAX* NX, NY, NAD, NX2, NY-2, NXYo NXDIM, NYDIM, NPT9
* IPLOTNITERNBUFNXMtNYNMNIISNFLAGD9Dl9D29Pl9P2,5RTD1,SRTD2#
* RSRD12,XCENTLASTSORT89PNDO9GCONDGCONi31)IHCZ10HCZ20,HCZ1N9
* HCZ2NHCZ12,ALPH1,ALPH2,9FET1CON1,CON2,HZOHZNtEXOEXN,:T1l,.'T2

C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * > *
COMPLEX A164,64)

C
C DEFINE PARAMFTERS FOR PHASE TRANSFOR,"iATION
C

HZ 1 -CON 1 *HZN
HZ2=CON2*HZN
ZD1I=(HZ F+HZO)*RDPC(NS)
ZD12=(HZ2+HZO)*RDl::(NS)
ZD21=(HZl+HZO)*RD2"(NS)
ZD22=(HZ2+HZO)*RD2,('INS)
ODI=DlC1(NF)* ((I1.0+-2.Q*ALPHl Ie,)S,1)
D12=D1U(NS)* (I1.j+2.0*ALPH1I5(PJS)*
D21=D2t. (NS)* (I1 .J+2. )*ALPH2((NS)*
D22=D2;.(NS)* (1 .O+2. *ALPH2,'5(NS)*
RD11=1.O/Dll
RD 12=1 . 0/112
R021=1.0/021
RD22=1.0/D?2
HCZ1N=!.5*HZN*(Rl)ll+RDI)2)
HCZ2tJ=t.5*HZN*(RD2I+RD22)
RSROSl=SORT(ROl I*RD21)
RSRD52=.S('RT(RD12*RD22)
HCZ12=;..5*HZN*(RSRDS1+RSRDS2 )

ZDIl ) **2+ZDll*ZOl I)
Z.012 )**2+ZD12*ZD12)
ZD21 )**2+ZDi)21*ZD21 )
7D22) **2+ZI)22*ZD22 )

C
C I'HFN N'MS=L', P2=(

WT1=P2*(HCZ12-HZ1*RSRl)S1-HZ2pRSRDS2I)
WT2=FhCZ12-W Tl

C
C RFSORT ARRAY IF NX LT 64
C

IF (NX *EO. NXDIM) G() TO 1155
DO 115 J=1 ,NY
DO 115 I=lNX

115 AlI+lJ-1)*NX)=A/II,J)
1155 CONTINUtF
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C
C PERFORM FOUR I ER TRANSFOWt.: - TO K-SPACE
C

CALL FASTFOURIA(191), M2, SV19 SV2, -1, IFERR)
IF (NX .LT. NX')IM) GO TO 1;)

C
C PLOT FOUR I ER TRANSFORM OF I NTLNS I TY DI STR I BUiT IONS AT
C APERTURE AND Z-FINAL
C

IF INITER .EQ. 1 *AND- NS *EQ. 1) CALL INTFNSIA, *TRUEo)
IF (ZZ+HZN+HZNMS.EQ.ZZF) CALL INTENS(A,.TRUE.)

10 CONTINUE
C
C APaPLY PHASE CHANGE TO ADVtNCE THE CALCULATIONS
C

DO 12 J=1,NY
DO 12 I=1,NX
JT=(J-1)*NX+I
PHI=Pl*((HCZ1O+HCZlN)*PHASL1(l)+(HCZ20+HCZ2N)*PHASE2(J))

12 A(JTI=A(JT)*CMPLXICOSIPHII,-SINiIPHI))
C

C PERFORM FOURIER TRANSFORM - TO REAL-SPACE
C

CALL FASTFOUR(A(191)9 V2, EV1, SV29 1, IFERR)
C
C RESORT ARRAY IF NX LT 64
C

IF INX .EQ. NXDIMJ GO TO 1165
DO 116 J=1,NY
DO 116 I=1,NX

116 A( IJ)=AII+(J-l)*NX)
116F RETURN

END
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SUBROUTINE DENSIA, B. ZCOORD, ND1, ND2, LD)
C
C THIS SUBROUTINE APPLYS THE PtlASE CHANGE
C
C I1-X**2)/D1+I1-Y**2)/D2-3NIGAVMA-1)*K**2*E/CS**2/SORTID1*D2)*
C SUMIPHI(IX-XP,Y,Z))**2
C
C THIS CONVERTS PSI (OR A) TO PHI
C

c** * * * * * * * * * * * * * * * *F * * * * * * * * * * * * * * * * *F *
COMMON /AAA/ EPS(64,64),EPSO(64,64),AOUT(11,999,BOUT(9,1^h,

* AIN(2,64),DALPH11I2),DALPH2I2),DBET1(2),ALPH10(2),ALPH20i')I
* PET1'1(2), D1(3(2), D20I(2)9 RD1C(2)9 RD20(7) SRTD1O(2)9 XCENO(2)

COMMON /RBB/ TENS(64964), G1(64), G2(64), PHASE1(64), PHASE2(64),
* CONMIN1U)I,M2(3),SV1(64),SV2(64) ,PARM(80)

COMMON /SINGLS/ F. PNA, PNALF, PNK, PND, PNS, PND, PNZ, HX, HY,
HZ, Z. ZZZZF, ZNM, ZFINAL, XZERO, YZERO, WIDTH, ALPHA, WN,

* VCDT, OMDT, HT, ENERGY, ALPHAC, CS, REFRACs 6AMMA, ETJ, CTK,
EJTKJ, RHT, POUT, DAREA, W2, TS, TPULSE, A52,PCt<,SITCUR1,TCOR2,

* Z1, R163MX Z2, RIMXMX, Z39 APIFN, Z4, HZMN. DKAREA, TENSMX,
* EX, PHIMX, EPSM'X, ERRMX, DGiMX, RI, BDIMAX, VTERM, PHIMXXHZNMS, 14
* Pl, IMAX, JMAX, NX, NY, NAD, NX2, NY2, NXY. NXDIM NYDIMF NPT,

IPLOTNITERNBU.)FNXMNYfIN,;SNFLAGDDlD2,Pl.P2,SRTD1,SRTD2,
RSRD12,XCENTLASTSo(RTB.,PNl)OGCONO,(iCON,tiIDltHfCZ1OthCZ20,HCZlN,
hCZ2NgHCZ12,ALPH1,ALPH2,BETTl CON1I CON2,HZHFIZLN[EXO(,XNLV!Tl,;!T2

COMMON /OlJTS/ HUM%,SCLFAC ,NRStNPNfiNCW EX JFXITNPLOT NP(tNCH
C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMPLEX A(64,64), B(64,64)
LOGICAL LD
DIMENSION TEN-(1l)t, EP50(112), HZSAVE(2)

C
C INITIALIZE Z-STEP ON FIRST CALL
C

IF (LD) (O TO 41

FIZNMS=o.0
tIZ.5AVEI 1 I=(*E
HZSAVE(2)=0.!)
P1="- 5
P2=0.0)

P3=1 *.(
EXN=1 *,

C
C ZZF = ZFINAL / K * WIDTH**2
C

HZMX=0. 1')*Z7F
IF ( NMS * ED 0() )HtZ'lX=(' * 5*HZMX
HZMllNlI=l.0)F-4*ZZF

IF (NAS.-EO-O HZM IN1=: *5*HZ:'l)iI
41 ZC0ORD=ZCCtORP+HZSAVF I ND1 I
C
C ZZ = Z(CM) / K * WIDTH**2
C
42 ZZ=ZCOORD
C
C 7NM = Z / F
C

ZN M=ZZ*Pf'NK
C
C 7 = 1(KM)
C

Z=ZNM*F*CTK+1 *.;E-6
C

D=ZZ*ZZ+(I1.O-ZNM)**2
ZDDI=HZ*RO1O(ND1 )
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D1=D1O(ND1)*((1.0+2.0*ALPH10(NDI)*ZDD1)**2+ZDD1*ZDDl)
SRTD1=SQRT(D1)

C
C VTERM = DISTANCE BETWEEN PULSES / DISTANCE BETWEEN GRID POINTS
C

VTERM=2.U* I 1.C+PNS*ZNM)/(HX*SRTDI*PNO)
IF(VTERM.LT.O) GO TO 45

EPSMX=GO.
JC=IFIX(1.O/VTERM)+l
DC=FLOAT(JC-2)

IF (NCW.EQ.1) GO TO 200
IF (DC) 48,49,50

C
C FXIT OPTIONS
C
45 NPUNCH=O

NEX IT=1
PRINT 1009 Z

not) FORMAT(//2X, *AT Z=*, F6.4t * KM, A DEAD ZONE IS PRESENT IN THE C
*ALCULATION*)

CALL OUTPUT(.TRUE.)
STOP

C
46 PRINT 101, Z
101 FORMAT ( // 2X *AT Z= * F6.4 * KM, IHERE ARE MORE IHAN lu PULbEb

. PER CELL PRESENT IN THE CALCULATION*)
STOP

C
47 NPUNCH=U

NEXI T=1
PRINT 103, Z

103 FORMAT( // 2X *AT Z= * F7.4 * KM, THE CALCULATED HZ 15 SMALLER TH
.AN THE MINIMUM ALLOWEI) VALUL*

CALL OlJTPlJT (.TRJE* )
STOP

c
C ***** *****NC*4*~*, 1,',,-.. ,w-, -,

c

C 5ttV THE INTENSITY ACRrOSS THF (,RID F-ER MULI I-PULSE

C INTEGRATE THI INTENSITY ACROSS TriE GRIDLFEOk CEN
C
C
C LESS THAN ONE RULSE PER CELL
C
48 11=VTERN

111=11+1
Fl=lll-VTERM
F2=1.0-Fl

DO 4 J=1,NY
DO 4 I=2,NX
IF(I-Ill.GE.1) GO TO 44
EPSO) I ,j)=EPSI I ,J)
EPSI I ,J)=tj.L

GO TO 4
44 EPSO) I .J)=EPSI I ,J)

EPSIIJ)=Fl*(TENS(I-I11J)+EPS(I-IlJ))+
* F2*(TENS(I-IllJ)+LPS(I-111,J))'

IF ITENS(I,J) *GT. j.L5*TENSMX) EPS.MX=AMAhXlEP MvtLEPbI,J))
4 CONTINUE

GO TO 51
C
C ONE TO TWO PULSES PER CELL
C
49 UTERM=2.O*VTERM

F1=2-0-UTERM
F2=1.0-Fl
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DO 5 J=1,NY
EPSU=O.O
TEN1=0.5*(TENS(1,J)+TENS(2,J))
EPSO(2,J)=EPS(2,J)
EPS(2,J)=Fl*TEN1+F2*TENb(19J)
EP5MX=AMAX1(EPSI2,J), EPSMX)

DO 5 I=3,NX
EPS1=Fl*(TENS(I-1,J)+EPS(I-1,J))+F2*(IENI+EP1l)
TEN1=0.5*(TENSII1-,J)+TENS(IJ))
EPSO(IJ)=FPS(IJ)
EPSIIJ)=F1*(TFNI+EPSI)+F2*f(TE~!SII-1,J)+FPS(I-1,J))
IF (TENS1IJ) .GT. LU.05*TENSM X) EPSM;X=AWAXI(EPSMXcPS(IJ))

5 CONTINUF
GO TO 51

C
C NAORE THAN TWO PULSES PER CELL
C
50 IF (JC *GT* 1t) GO TO 46

UTERM=FL(0AT(JC)*VTERi'
F1=2.0-UTERM
F2= 1.0-Fl

DO 6 J=11,HAY
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1=2
EPSOL1)=O*O
EPSO(2)=O.O
TENO(1)=TENS(I-1,J)
TENO(2)=(TENS(1IJ).+(FLOAT(JC)-1.O)*IEN$(1-1,J>)/FLOAitJC) , C

DO 70 JJ=3,JC
FJ=FLOAT(JJ-1)/FLOAT(JC)
TENO(JJ)=FJ*TENS(IJ)+(Il.O-FJ)*IENSI1-1,J)
EPSO(JJ)=Fl*(TENU(JJ-1)+EPKuIJJ-1))+F2*% ENvtJJ-2)+Eie~ JJ-2))

70 CONTINUE
EPSO(I,J)=EPS(I,J)
EPS(IJ)=F1*(TENO(JC)+EPSO(JC))+F2*(TENO(JC-1)+EPSO(JC-1))
EPSMX=AMAX1(EPS(IIJjt. EPSMX)

DO 6 1=3,NX
EPSO(1)=EPS(I-l.J)
TENO(I1)=TENS(I-1,J)
EPSO(2)=F1*(TENOI1)+EPSOI1))+F2*(TENO(JC)+EPSO(JC))
TENO(2)=(TENS(IJ)+(FLOAT(JC)-l.O)*TENb(I-1,J))/FLOAI(JC)

DO 71 JJ=39JC
FJ=FLOAT(JJ-1)/FLOAT(JC)
TENO(JJ)=FJ*TENS(IJ)+(l.U-FJ)*IENItI-1,J)
EPSO(JJ)=F1*(TENO(JJ-1)+EPSG(JJ-1))+F2*(IENU0JJ-2)+EPsui JJ-2))

71 CONTINUE
EPSO(IIJ)=EPS(I,J)
EPSIIJ)=Fl*(TENO(JC)+EPSO(JC))+F2*IIENt;(JC-1)+EPbutJC-1))
IF (TENS(IIJ) *GT. *(05*IENSMX) EHb A v=Am=ArIAAl1Erom Ero I Ji)

6 CONTINUE
GO TO 51

C
C COMPUTE CW INTEGRAL
c
200 DO lid J=1,NY

EPSO(lJ)=EPSI(,J)
EPS(1,JO)=.5*HX*TENS(1,J)*'.,vITH/(V(!DT*(l.+PNb*4NMA))

1 *SQRT(D1)
DO 110 1=2,NX
EPSO( I J)=EPS( I ,J)
EPS(IJ)=EPSI-I1,J)+tu.5*HX*(TENS(IJ)+TENS(I-1,J))*';.IDTH/

1 (VODT*(1.+PNS*ZNM I))
1 *SORT ( D1I )

IF (TENS(IJ) GT...;,5*TTFNSM'X) EPS:=AMAx1(EPzaMEPaIJJ)
110 CONTINUE
c
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C
51 EXO=EXN

EX=EXP(-PNALF*ZNM)
EXN=EX
GCON=GCONO*EX
IF (LD) CALL VTRANS(A*ND1)
HZO=HZN
HCZ1O=HCZ1N
HCZ20=HCZ2N

C
C CALCULATE THE Z-INTEGRALb wHEN NMb = U
C

IF (NMS.NE.O) GO TO) 52
HZNMS=HZO
HZ1=CON1*HZO
HZ2=CON2*HZO
ZD1I=HZ]*RDIO(NDI )
ZD12=HZ2*RD1()ND1 )
ZD21=HZI*RD20I (ND)lI
ZD22=HZ2*RD20 ( ND1 )
Dll=DlO(NDl)1*1i. +2.<,*ALPhlON[)1)*ZD11)*-x2+ZD11*ZDll)
D12=[)10(ND1)*((1.0+2*.*ALPH1O(iND1)*ZD12)**2+ZD12*ZD12)
D21=D20(ND1)*((1.U+2.-*ALPH2C(iNU1)*ZD21)**2+/O21*LOD21)
D22=D20(NDI)*((101+2.,:*ALPH20(ND1)*Z[)22)**2+4D22*LD22)
RD11=1 *OU/Dl1

RD12=1.u/D12
RD21=1.0/P21
RD22=1 .0/n?2
RSRDS1=SQRT(RD11*RD21)
RSRDS2=SORT ( RD12*RD22 )

C
C TJF 3 Z- I NTEGRALS
C

HCZ1O=t.5*HZO* (RI)11+RD)12I
ICZ20=.*5*ItZO*(RD21+RD22 .
HCZ 12=0 - 5*HZO* (RSRDSl+RSRDS 2)
WT2=HiCZ ] 2

c C()M",PUTF NFt' 7 IN.CREI;ENT I r Z/KA**2 uN) IJ
c
5 2 I-ZN=P3*Atl IN1l( ;.u4*Dl t( t~1[? P~ilMXX/

LRSRD12*G-ClNi*IFPSMX+1.GF-5(A) ) 
IF (HZN-GT.HZMX) HlZN-=HzrX

IF (HZN *LT. HZMINI) GO IC 47
IF (HZN .GT. ZZF-ZZ-HZNMi) HLN=Z4F-zL-HLNM,
HZ=HZO+HZN
HZSAVE ( ND2 ) =HZ

C
C COMPUTE THF THREE Z-INTEGRALb
C
C nO ONLY ON FIRST CALL
C

IF (LD) Go TO 54
IF .(NMS-FO-O) P3=0-5
HZ1=CONl*HZ
HZ2=CON2*HZ
ZD11=HZl*RDlu(ND2)
ZD12=HZ2*RD1U.)(ND2)
ZD21=HZ1*RD2J (ND2)
ZD22=rlZ2*RD2()(ND2)
D1l=DlJ(NP2)*((1.u+2*, *ALPH1,(ND2)*Zt)11)**2+L)11*tDl1)
D12=Dlu(ND2)*( (l.v+2-.i*ALPHilu(1LiD2)2*LU12)**2+zl)U12;LD12)
D21=D2;i(NND 2)*(1(11.+2.* d*ALPH2uiNr)2)*L1)21)**2+LD21*tLU 21)
D22=D20(ND?2)*((II1..+2.tu*ALPh22ul'[)2);?I*)22)*;*2+Ll'22*LOD22)
RD11=1-.0/D11
RD12=1.0/D12
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RD21=1.0/D21
RD22=1.0iD22
RSRDS1=SQRT(RD11*RD21)1
RSRDS2=SQRT I RD12*RD22 )
HCZ10=0.5*HZ*(RD11+x012I
HCZ2O=U.5*HZ*(RD21+RD22)
HCZ12=0.5*HZ*(RSRDS1+RSRDS2)
T T1=C..

WT2=HICZ12
c
C CO'PUTE THE PHASF CHiANG L IN ThIS LOOP !iH[N U'sN NE o
c
54 CONTINUE
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PH IMX=O .0
IF (NMS *EQ. C)) GO TO 80

DO 55 J=1,NY
Y=YZERO+FLOAT(J-1 *HY

DO 55 I= 1NX
X=XZERO+FLOAT(I-1)*HX
GNEW=GCONO*(WT1*EXO*EPSO(IIJ)+WT2*EXN*EPS(IJ))
PHI=0O5*P1*(HCZ1O*Gl(I)+HCZ20*G2(J)-GNEw)
PHI=PHI-X*X*DALPH1(ND2)-Y*Y*DALPH2(ND2)-A*DBE,1tND2)
BIIJ)=B(IJ)*CMPLX(CObtPHI), oINtPHI))
IF (TENS(IJ) *LI. utu5*oENxflA) GU U 5b
PHIMX=AMAX1(PHIMX, u*5*GNEw)

55 CONTINUE
GO TO 60

C
C COMPUTE THE PHASE CHANGE IN THIS LOOP WHEN NMb = U
C
80 DO 85 J=1,NY

Y=YZERO+FLOAT(J-1)*HY
DO 85 I=1NX

X=XZERO+FLOAT(I-1I)*HX
GNEN'=GCONC*(WT1*EXO*EFPSOIIJ)+WT2*EXN*EPS(IJ))
PHI=L.5*Pl*(HCZIO*Gl(I)+HCL20*c2(J)-GNEt,)
PHI=PHI-X*X*DALPHI(ND2)-Y*Y*DALPH2(ND12)-X *DBEiltND2)
A(1IJ)=A(IiJ)*CN;PLX(COs(PhlI), aINiPHI))
IF (TENSIIJ) *LT. J.)5*TENSP4X) GO 10 85
PHIMX=AMAX1(PHIMX, ).5*GNEi)

85 CONTINUF
60) RETURN

END
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SUBROUTINE INTENS(A, LI)
C
C THIS SUbROUTINE TAPERS THE BOUNDARIES OF THE COMPUTATIONAL
C GRID TO ZERO, FINDS THE INIENSIly Ai EACH GmID rUIs4
C AND PLOTS THE CONTOURS OF IHE FOURIER iRANaFORMED ilAiRIA*
C
C* * *

COMMON /AAA/ EPS(64,64),EPS(64,64),AOUI(11,99§,BOUI(9,1U),
. AIN(2,64),DALPH1(2),DALPH2(2)1,DHEIl 2),ALPHlvU2),ALPH2ut2)9

BETlj(2), D10(2), D20u2)1 RDlu%2)I XK2vj2)9 .NUFNvI) ,~E,%Z)
COMMON /BBB/ TENS(64,64), G1i64), G2t64), PF.A,)E1t64).-PHAoE2%64),

* CONMIN(lO) M2(3) ,SV1(64) ,SV2(64) ,PARMt8u)
COMMON /SINGLS/ Ft PNA, PNALF, PNK, PNO, PNS, PND, PNL, hX, hY,

HZ, Z, ZZZZF, ZNM, ZFINAL, XZERO0 YLERO0 wIDiH, ALPIHAj wN,
* V(ODT OMDT. HT, ENERGY, ALPlAC, Cb, REFR<AC, GAmMA, E,'_ CiK,
* EJTKJ, RHT, POUT, DAKEA, ;:2, slo lPULz)E Ao2,sCqoIiCu'ls,,CUK2,
* Z1, RI63MX, Z2, RIMXMX, L3, APMN, L4, HLMN, DKAREA, iENSMA9
* EX, PHIMX, EPSMX, ERRMX, DGMx, R1, BDIMAA, viERM, PHIl, AHLN\M, 14

PI, I MAX, JMAX, NX, NY, 9NAD, NX2 NY2, NXY. NXDIMV NYDIM, NPI,
I PLOT ,NI TERNBUF ,NXMiNYkNMlS ,NFLAG ,D,D1,D2 ,P1 ,P2 ,bR I D1 ,sR I D2,
RSRD12,XCENTLASTSQRT8,PNDOOGCONu,(CUNUL)I,)-CzlO-iCL20,hClNI
FHCZ2NHCZ12,ALPH1,ALPH2,BEl1,CUiNl,CUtN2,HLUH/tEAUEAt'9,11,ls2

COMMON /OUTS/ NBM ,SCLFACNkb, NP, iN4C.;, i9EAIi ,NPLU iNPUNCH
C* * * * * * * * * * * * * * * #* * * * * * * * * * *: i * *, * * * * *

COMPLEX A(64,64)
LOGICAL LI

C

C TAPER B(HUNDARY VALUES T:, ZERO
C

IF (LI) GO TO 12:'
DO 100 1=1 ,NX
A II 11 )=;.(
A( INY)=n-.;
A( I,2)=AII,2)*ii-5

].00i A(I,)NY-ill=r(1,1NY-il)*Q.5
DO 110 J=1,NY
Al 1 ,J) =0.0
A(NXJ)=Ct..
Al2,J)=A(2,J)*:i.5

I lv Al (NX-1) ,JA) =AlX-1l ,( jI *5
12C CONTINUE
C
C COMPUTE THE INTENSITY AT FACH 0;I' POINT AND LOCATE TtiE MAXIILJM
C

TENSMX= C.)
DO 9 J=1,NY
DO 9 l=1,NX
TENS(IJ)=AIIJ)*CONJ(,I(AIJ))
IF (TENSIIJ) *LE- TENSMX) GO TO 9
I MAX= I
J>IAX=J
TFNSMX=TENSLIJ)

9 CONTINUE
C
C RETURN IF NOT PLC)TTING FOURIEK TRANS-uR;-'S
C

IF (.NOT. LI) GO TO 15
C
C RESORT ARRAY WHEN PLOTTI,^,G FUO,1RI I -ANSF-,S5
C

DO 16 J=1,NY2
DO 18 l=1NX2
HOLD=TENSIIJI
TENS(ItJ)=TENS(I+NX2,J+NY2)
TENS( I+NX2,J+NY21=ttOLD

18 CONTINUE
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SSPARAMA: A NONLINEAR, WAVE OPTICS MULTIPULSE
(AND CW) STEADY-STATE PROPAGATION CODE WITH

ADAPTIVE COORDINATES

INTRODUCTION

Several methods of propagating CW high-energy laser beams through the atmosphere
have been reported previously [1,2]. This report will describe a method for propagating
multiply pulsed laser beams in a nonlinear atmosphere by adapting the coordinate system
to the amount of thermal blooming. This technique increases the accuracy of thermal-
blooming calculations and extends the capability of the code in the case of extreme beam
distortion.

The computer code SSPARAMA calculates the steady-state intensity pattern of a
train of high-energy laser pulses propagating through the atmosphere in the presence of
thermal blooming. Steady state is achieved when enough equally spaced, equal-energy
pulses have been propagated for transients in air heating to have died out. In the steady
state a single pulse will propagate in an atmosphere that has been heated by many
preceding pulses which have the same energy distribution as the pulse one is calculating.
The pulse widths are assumed to be short compared to the sound transit time across the
face of the beam, so that self-blooming will not take place. Blooming occurs only as a
result of air heating by preceding pulses. However, to avoid problems of plasma forma-
tion, the pulse width must be sufficiently long that the critical intensity for air break-
down is not exceeded. Finally, as the pulse is propagated from one coordinate plane to
another, coordinate transformations are performed to insure that the transverse scale
lengths are adapted to the amount of thermal blooming induced on the pulse train by the
negative lensing influence of the heated atmosphere.

Another requirement for steady-state propagation is that a cooling mechanism exist
for removing heated air from the path of the beam. In SSPARAMA, cooling is provided
either by a wind moving perpendicular to the propagation direction or by beam sluing
about an axis in the aperture plane perpendicular to both the wind and the propagation
directions. The steady-state density changes Ap introduced in the path of a given pulse
by energy absorption from all preceding pulses can then be expressed as [3]

c 2 uEp eZ- E j0(x-nAts(vo + 2z),y,z)I 2
M nsi I

Manuscript submitted October 14, 1976.
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where

z = the distance in the propagation direction measured from the aperture plane,

x = the distance in the wind direction measured from beam maximum intensity
in the aperture plane,

-y = the ratio of atmospheric specific heats (- 1.4),

c,= the speed of sound in air (t340 m/s),

oa = the absorption coefficient for the laser radiation,

Ats = the pulse spacing,

Ep = the energy of each laser pulse,

vo= the wind speed along the x direction perpendicular to the direction of
propagation, and

Q = the angular sluing rate of the beam about the y axis.

Finally 0 is the normalized steady-state energy distribution of each pulse at the z plane:

f 0(x, y, Z)12 dxdy = 1. (2)

This density reduction Ap changes the index of refraction from its ambient value no,
where no ; 1, to

n2 - n 2 + 3NAp,

where N is the molecular refractivity of air (t0.154 cm3 /g). The distribution 0 must
then be calculated self-consistently from the propagation equation:

[2ik a + a2 + a2 + 3N2Ap(12)1 =0, (3)1 az ax2 ay2 3NA ()J()

where k = 2ir/X is the wavenumber of the laser radiation. It is assumed in SSPARAMA
that at z = 0 the pulse train has a spherical phase front and a truncated intensity profile.
For example, when truncated Gaussian pulses are propagated

¢(x, y, 0) = NgqOgg(X,y), x2 + y2 < 2a2 ,

= °s X2 + y 2 > 2a2 , (4)

where

g(X) A 1 e[l+(ika 2lf)] [(x 2 +y2 )/a2]l2 (5)

2
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and Ng is a normalization constant insuring that Eq. (2) is satisfied at z = 0. Two scale
lengths, a and f, are defined in Eq. (5). The scale length f, the initial curvature of the
phase front, defines the distance from the aperture to the focal plane. At a distance a
from the aperture center the beam intensity falls to l/e of its maximum value, and the
beam is truncated at l/e2 of maximum intensity.

Altogether eight variable physical quantities, a, f, k, a, Ep, At5 , vo, and Q2 appear in
Eqs. (1) through (5). Al variations will not however lead to a mathematically distinct
problem. In SSPARAMA Eqs. (1) through (5) are scaled so that distinct propagation
problems are defined in terms of five dimensionless parameters. The program is designed
to accept either the set of data with dimensions or the dimensionless set, and both sets
are printed out.

The scaling of Eqs. (1) through (5) is carried out via the coordinate transformations

X _ X y - Y, (6)
a' a (6

and the variable transformation

di~x y, )-aO(x, y, z). (7)

By multiplying Eq. (3) through by a3 , one can write the propagation equation in a form
which identifies the five dimensionless parameters characterizing propagation in
SSPARAMA:

1+ a + -a2 n {2iNk aa- _ aa +a -NkNce -Nzz E([X 2n(+ ), 1 |} = 0. (8)
2k a.~2 a~2

No, iF 12

The five parameters, Nk, Nc, Na, No, and N5, are defined as

Nk = ka 2 /f, (9)

Nc=3Nk('y - 1)afEp 10
CS 2a2(10)

Na = off (11)

No = 2a (12)

and

Ns = 92f/uo. (13)

Nk is the Fresnel number of the free-propagation problem, and Nc, Na, No, and N8 are
coupling strength, absorption, overlap, and sluing parameters respectively. No was intro-
duced by Wallace and Lilly [4] and called the pulses-per-flow-time parameter. It
measures the number of preceding pulses which have heated the air across the beam

3
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aperture as the pulse under study begins to propagate. The solution to Eq. (8) is ob-
tained subject to the energy normalization

f¢(3, y, O) 12 dx~ dy = 1 (14)

and the initial condition

Y)= IeiNk(X 2+52 )/2 (15)

where I 0I = 0 for X2 + y2 > 2.

Equations (8), (14), and (15) are numerically solved in SSPARAMA on a 64-by-64
grid in the xy plane. Since one would like to use as much of the computational grid as
possible to describe the variations in beam intensity, a scheme for adapting the coordi-
nate grid to the propagation must be used. For example, as the beam propagates, the
initial focusing causes the beam intensity pattern to decrease in size until the negative
lensing effects of the heated atmosphere accumulate to thermally defocus it. Moreover,
since the wind removes heated air from the path of the beam from left to right, a
thermal gradient is established that deflects the beam from right to left. If the computa-
tional grid were not moved or changed in size as the beam intensity was calculated from
aperture to focal plane, the intensity pattern would either be poorly sampled as it de-
creased in size or it would expand or deflect to reach the boundary of the grid and
invalidate the calculation.

A technique for adapting the computational grid to local changes in the size or
location of the beam intensity pattern has been developed by Herrmann and Bradley [5].
A slightly modified form of their technique has been incorporated into SSPARAMA and
will be described in the next section of this report. In the third section the numerical
procedures used in SSPARAMA will be described, and in the fourth section the code
usage will be explained.

COORDINATE-SYSTEM ADAPTION

The dimensionless form of the propagation equation can be rewritten more com-
pactly as

[2iNkaj+ a? +a.? +k 2a2(n2 - 1)] = 0, (16)

where n2 - 1, the nonlinear index of refraction, depends on 0 as given by Eq. (8). The
cyi coordinate system is normalized to the constant lengths a and f, and is fixed in space.
In this system therefore the beam will lie symmetrically about the origin of the xy plane
only at i = 0 with an extent of order 1 (see, for example, Eq. (15)). When z = 0, a new
set of xy coordinates is needed to maintain the two properties that the beam be centered
about the xy coordinate origin and be of order 1 in extent. In general, one can relate
the xy and 3y coordinates by a set of scale parameters D1 and D2 and a deflection
parameter X, which are functions of z. Since one would like to solve Eq. (16) in a set of
coordinates that adapt to changes in beam size and direction, the coordinate transformation

4
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must be related to these beam changes as determined by the linear and quadratic terms
of the phase front. By analogy therefore with the transformation to dimensionless
parameters, one must perform simultaneous coordinate and variable transformations.
The form of these transformations is suggested by linear propagation theory:

x= XA/E, (17)

Y = , (18)

i = Z. (19)
Nk

and

0~~~~ =j e(0tx2 +02 y2 +0-+1+72) (20)

The constant scale change from i to z is done for convenience to eliminate Nk from the
z-derivative term in Eq. (16):

2iNkai -+ 2ia,.

The factor 1/D 1 D2 is removed from f to insure the form invariance of the energy
normalization:

f 2dxd1 =b fIl2 dxdy = 1. (21)

When Eqs. (17) through (20) are substituted into Eq. (16) and when the nonlinear
term is of negligible size and the beam has a Gaussian profile, D1 , D2 , X, &1, &2, I, h,
and i2 as functions of z can be analytically determined for all z. However, when the
nonlinear term is important or when a non-Gaussian beam is propagated, the W's and I,
which represent the effective quadratic and linear phase changes throughout the xy plane,
can no longer be so determined. One must adopt a more limited strategy for the em-
ployment of Eqs. (17) through (20).

Consider, for example, that the quantities D1 , D2 , X, &1, &2, I, jj, and i2 are
known at z = zo and that their dependence on z is to be analytically determined as one
propagates to a neighboring xy plane at zo + Az. Since

- 1I aX (22)

3X2 1 a2

y= D-a 2 (23)

5
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and

a [az - (X az ln DI + ,)ax Y- az ln D2 a ] (24)

one finds that

[2iNka- + a3-2 + ay2 + k2 a 2 (n 2 - 1)] ei(&1j2+&2y2+P+11+z2)

ei&X+22,xT+2 r /1 xl aY= (12+2 2#~j +f2) 2az - x az In DI 3x - ,1 azXa, -- az In D2 ay)

-' (az InDI + az lnD2) - 2az(ej + 2) + 1 ax2 - [2&1(/-x +X) + p]2

2~~~~~~~D
+ ..2 [20&i(VDix +X) + A] ax + 2i&1 + D-y-422

+ 4i&2yay + 2i&2 + k2a2 (n2 -1) } 4 = 0. (25)

For vanishingly small n2 - 1 and for a real Gaussian profile 4/(x, y, zo ) one would deter-
mine D1, D2 , X, &1, &2, :, 7I, and j 2 from the requirement that Eq. (25) be capable of
being put in the form

[2iaz + D1 (aX2 + X2) + 1 (ay2 +ly2) + k2a2(n2-1)] . (26)

Then, as 4/ was propagated to zo + Az, it would acquire no z dependence and would
remain real and Gaussian; that is, all of the z dependence of q would have been accounted
for in D1 , *--, i2-

For the imaginary terms of Eq. (25) other than 2i az to vanish, the quantities D1 ,
D2 , and X, which determine the scale and location of the xyz coordinate system, must
satisfy the equations

a lnDI = 4 &1, (27)

a lnD2 = 4&2, (28)

and

azX = 2&1X + ,B. (29)

On the other hand, for the real terms involving a. and ay to vanish and for the scale
functions D1 and D2 to be factorable from the remaining x and y terms respectively, the
phase functions &1, &2, ,B, 11, and 72 must satisfy the set of equations

6
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:rr2D1 az&1 + 4&?1D1 = , 30

2 1 e 
222D2a,& 2 + 4U2 D2 -- , (31)

a,0 + 2xa,&l + 2&1(2&1X+p) = 0, (32)

2a3,j + 2x2 az&l + 2xaz + (2IXX+ 3)2 = - 1 (33)

and

-2aZ 2=- 1 * (34)
D2

Thus Eqs. (27) through (34) will determine all of the z dependence of 4 when 4(x, y, zo)
is real and a Gaussian function of x and y and there is no lensing effect caused by heating
of the atmosphere; that is, Eqs. (27) through (34) will describe beam focusing in the
absence of diffraction and nonlinear media phenomena. They are of more limited utility
when such phenomena are present. In this case, during the displacement of 0 from zo to
ZO + Az, linear and quadratic phase changes will arise from two sources. As a result of
focusing at z = zo, the initial phases &1(zo), &2(ZO), and ~(zo) will become &i(zo + Az),
o&2(ZO + Az), and O(zo + Az) through the solution to Eqs. (27) through (34). In addition
however 4 at zo + Az will acquire linear and quadratic phases, AO, A&1, and A&2 respec-
tively, as a result of diffraction and thermal blooming. Thus at zo + Az a new factoriza-
tion of 0 must be made, namely,

¢(X, ~ ) 4/'(X, y, zy + Az) i[&'i(ZO+Az)32+ &2(zo+Az)52 +-'(zO+AZ)i-' ;+,~]

YDI(z 0 +Az)D2 (Zo +Az)
(35)

if ', which is to be propagated from zo + Az to zo + Az + Az', is not to initially have
quadratic or linear phase terms. After each step in propagation therefore &1, &2 , and (B
must be redefined as

&j'(Zo +Az) = &1(Zo +Az) + A&1 , (36)

2(ZO + AZ) = &2 (ZO + AZ) + A&2 , (37)

and

p (Zo + Az) = N(zo + Az) + A4 (38)

in order to adapt the coordinate-system determination from Eqs. (27) through (29) to
changes in phase that result from focusing, diffraction, and thermal blooming.

7
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In SSPARAMA, 4 is propagated from one z plane to another by finite-differencing
a phase-transformed version of Eq. (26). Then Aa1, Aa2 , and AO are found in the xyz
coordinate system using the method of phase minimization discussed by Herrmann and
Bradley [5]. One requires that

f 1012 [V(Aalx2 + Aa2 y 2 + ABx - y)]2 dxdy = minimum, (39)
z=z 0 +Az

where (x, y, zo + Az) Io Ie"y. It follows that

D1E - B1C(
2(A 1E - B1

2 ) (40)

AP A1C1 - B1Dj (41)
A 1 E - B1

2

and

Aa 2 = 2 (42)
2A

where

A I-fX2112dxdy, A2 =fy2i/2 dxdy, (43)

B1 -fx/ 12 dxdy, (44)

C, - Im fo*ax 4dxdy, (45)

D, -- Imfx/*ax4/dxdy, D2 -Imfy4*ay4/dxdy, (46)

and

E -fi 12 dxdy = 1. (47)

The factorization

4/(x, y, zo + Az) - 'ei(Aaix2 +Aa2 y2 +Aflx) (48)

will then define ' at zo + Az as a wave function of minimum quadratic and linear phase.
In particular, if A is exactly a Gaussian beam, 4' will be real.

8
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The relationship between {AUe1, AU2 ,
tuting Eqs. (17) and (18) into Eq. (48):

/,} and {A&1, A&2, A,} is found by substi-

Au,
Ace1 = -,

Ac2 = D '4 2

AF = AO - 2AaiX

N/- D1

and

(49)

(50)

(51)

A similar set of equations will hold between {&j, a2, } and {I 1, C2, ,B3, which are
computed directly in the xyz coordinate system. When reexpressed in terms of al, a2

and ,B, Eqs. (27) through (29) become

azDl = 4al,

azD2 = 4U2 ,

and

azx = '

and Eqs. (30) through (32) transform into

(52)

(53)

(54)

azal = 1 (1 + 4al 2 ),
2D1

az e2 = 2D 2 2e~)

and

aZ( = 3aD(3

(55)

(56)

(57)

Eqs. (52) through (57) must be solved in terms of initial values at zo. The solutions are

D1 , 2 (Z) = D 1 ,2 (ZO) {[1 +
2lce,2 (zo) (z-ZO)]

2
r z - Zo Ii

LD1,2(ZO) JI

9
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C'1 ,2 (Z) = U1,2(Zo) + 2 {1 + [2e 1, 2 (ZO)] 2 } Z ZO (59)

[2a, (ZO) I2 Fz -_zol2
((Z) = (Zo) V + D (z ) (z - ZO )] + [ )D - (60)

and

X(Z) = X(zO) + O / (z - ZO). (61)
\.D-1 (z0 )

Finally the procedure for solving Eq. (26) in SSPARAMA is similar to the one
described in an earlier report [2]. A phase transformation on / is made:

m(x, Y. z) - (x, y, z) e-l)Ilxyz'd (62)

where

g(x, Y (1-X 2) + DI 2 + k2a2(n2 -1). (63)

The equation for FD follows from Eq. (26):

[2i aZ + H(x, y, z)] D = 0, (64)

where

(i12) / 1 2+1 a2 ) (i1)f zg dz'
H = e-(i/2)0gdz' aD 2 + -2a je z (65)

By picking z' to lie between zo and zo + Az, one can propagate 4) from zo to zo + AZO,
with first-order accuracy, by solving the equation

[2iaz + H(x, y, z)] = (2iaz +! a 2 + 1 aY2)I = 0. (66)

Equation (66) is solved by Fourier transforming 4) [6],

D (kj, k2 , ZO) )fei(h1x+k2y(x,y,zo)dxdy, (67)

and propagating 4 to zo + Az:

d1(k1, k2 , z0 + Az) 't(k 1 , k2, zo~e(i/2){klZ [1IDl(z)]dz+k2 zo+Az[lID 2(Z)]dz}

10
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The inverse transformation to Eq. (67) then yields AD, and Eq. (62) yields 4/(x, y,
zo + Az).

NUMERICAL PROCEDURES

The phase function g(x, y, z) of Eq. (63) can be written more usefully in the form

g = gg(x) + g2 (Y) g3 (X, y, z) (69)
D1 (z) D2 (Z) VDD1 (z)D2 (z)

where

g1 (X) 1 - X2 , (70)

g2(y)- 1 - y2 , (71)

and

NN ~~X 2n 2
g3 (X, y, Z) -NhNce NaNkz Z [xo- N\IDj(z NNz))Yz] . (72)

This expression for g3 is found by substituting the new variables x, y, z, and ') into
Eq. (8). The phase integral

AO f g(x, y, z') dz'
zo

appearing in Eq. (62) can now be partially evaluated and expressed in the form

rZ g3 (X' ,yZ)AO = g1(X)AZ1 + g2 (Y)AZ2 - J .D ( )D W Y dz, (73)

where

C d' L.. ___-AZ1,2 -fr dz = tanh- 1 ({I + [2r1,2(zo)] 21 -z 2a, 2(Zo)) (74)
D1 2 (z) y1 LL12zjfD 1 ,2 (Z0 ) Z 2Z0

The differential quantities AZ, and AZ2 are similarly named as the coordinate differ-
ential AZ that was used in earlier code calculations which involved only a single scaling
function D(z).

To complete the evaluation of AO, one must know the z dependence of g3 , that is,
the z dependence of 1lDJ2. Two options are provided in SSPARAMA, for evaluating AO,
depending on whether one has determined V'j>2 at one or both of the integration

11
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endpoints. The procedures work as follows: Suppose first that the solution for i (x, y, zo)
has been obtained. Then one can compute g(x, y, zo), since 14)(x, y, zo)12 = 14(x, y, zo)12 .
To find 1(x, y, zo), however, one must evaluate

AG' f- J g(x, y, zI)dz', (75)
zo

where z' lies between zo and the plane zo + Az to which one would like to propagate 4.
If At is known only at zo, the zeroth-order approximation

AO' - g1(X)AZl + g2 (Y)AZ2 - g3 (XYVZO)AZ12 (76)

must be made, where

AZ, 02 z (77)
J2 - ./D1(z')D 2(Z')

Equation (66) can now be solved for 4f(x, y, zo + Az) by the use of Fourier trans-
formations. Finally on performance of the phase integral

z0 +Az
AG" - J g(x, y, z') dz' (78)

zo

(x, y, zo + Az) can be obtained from 4D(x, y, zo + Az). In keeping with the accuracy
with which AO' was approximated, AO" can be approximately evaluated as

A" O g1(X)AZ' + g2 (Y)AZ'' - g3 (X, Y, ZO + AZ)AZ'12 (79)

The differentials AZ", AZ", and AZ72 are defined by the integrals of Eqs. (74) and (77)
with the integration limits as specified in Eq. (78).

Suppose however that initially both O(x, y, zo) and O(x, y, zo) are known and that
the values of ' at zo are to be propagated to the plane at zo + Az. In this case the
phase integrals defined in Eqs. (75) and (78) can be approximated using the integration
formula

X0+AX
Jf (x)g(x)dx ; W1f(X0 ) + w2 f(x 0 + Ax), (80)

xo

which has first-order instead of zeroth-order accuracy. The weights w1 and W2 are thus
determined such that equality will hold in Eq. (80) whenever f is a linear function of x:

* ~~~~2xo fxO +Ax 2 fo 0A
1 Ax )JX g(x) dx - - xg(x) dx (81)

AX ~~~AX x

12
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and

2 Xo +Ax 2xo Xo +AX
W2 = 2 J xg(x) dx - g(x) dx. (82)

xo xo

Then, for example, in place of Eq. (76) one would have that

AO' ; g1(X)AZ'1 + g2 (Y)AZ2 - g3(X, y, ZO)AZ3 - g3(X, y, Z)AZ4, (83)

where AZ'3 and AZ' are related through Eqs. (81) and (82) to AZ'1 2 and an integration
over the function z/DY(z)DI2(Z):

zI+ z 0 , _ 2 O z'Idz'
AZ, AZ1'2 J84

0- Zo zO - z V f D1 (z)D 2 (z) (84)

and

4Z~ zo 2 zo Z' z' z -zo AZ 2 ] (85)

Although integrations over D 1 and D -1 can be carried out analytically in terms of
inverse hyperbolic tangents (as in Eq. (74)), integrals over 1 /yii7D produce elliptic
functions. Both sets of integrations are handled in SSPARAMA numerically, with third-
order accuracy, using a second integration formula:

0o+AX Ax
ff f(x) dx -2 [f(xo + AX1 ) + f(x 0 + AX2)] (86)

xo

where Ax, (1 - 1&F/)Ax/2 and AX2 (1 + 1/v<) Ax/2. Again, as an example, con-
sider Eqs. (84) and (85) and define

1
(87)

VD1 (z1)D2 (zD ) (87)

and

1

VDI(z 2 )D2 (Z2) (88)

where z- zo + (1- 1//)[(z' - zo)/2] and Z2 zo + (1 + 1/x3)[(zo - zo)/2]. One can
complete the numerical evaluation of AZ' and' AZ' by rewriting Eqs. (84) and (85) with
the use of Eq. (86), in terms of fi and f2 :

13
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AZ3 = 2X - 3 - f2) (89)

and

Zo - Xo [1 +( X 2]

= (z _Zo)(f' 2 ) AZ3 (90)

The procedure by which Eqs. (80) through (90) are employed requires that two sets
of values of ' be stored at any time by SSPARAMA. At the beginning of the propaga-
tion step described above, the two arrays contain the values of 4(x, y, zo) and 4(x, y,
zb), where zo < z' < zo + Az. At the end of the propagation step the values of
V'(x, y, zo) have been replaced by 4(x, y, zo + Az). These new values can then be used
to propagate O(x, y, zo) to VI(x, y, zb + Az'), where now zo < zo + Az < z8 + Az'. The
process of alternatively propagating one and then the other of the two arrays is repeated
until the focal plane, defined by the initial beam curvature, is reached.

Since both arrays are initially assigned the values O(x, y, 0), the process of
propagating one array, past the other cannot begin until- after the first propagation step.
The first z step is therefore taken using Eqs. (76) and (79) to determine AO' and AO". In
general the incremental steps Az are selected in SSPARAMA according to a criterion that
the phase changes induced by g3 as computed from Eq. (76) be no larger than some pre-
assigned value of order 1 for all x and y. However, to carry out the first advancement of
41 at zo = 0, half of the initially computed Az value is used. This leapfrog procedure is
summarized for the first few z steps in Fig. 1.

The advantage conveyed by using Eqs. (76) and (79) to evaluate the phase integrals
AG' and AO" is that only one 4 array is needed in carrying out the calculation. Because
of the reduced accuracy in computing AG' and AO", however, smaller z steps are in
principle required to obtain the same results as when two arrays at different z planes are
used. To allow a quantitative comparison of these two procedures, both options for
propagating 4 were installed in SSPARAMA and can be selected according to the value
of one of the input parameters to the code. For the same reason, another input param-
eter is also available that allows one to adapt or not adapt the coordinate system to the
amount of diffraction or thermal blooming occurring during beam propagation.

PROGRAM OPERATION

This section will describe the input parameters required to run SSPARAMA and
explain the data included in the output. A complete listing of SSPARAMA is included in
Appendix A.

To use program SSPARAMA, two input cards are required. The first specifies cer-
tain numerical parameters and selects various program options, and the second defines the

14
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STEP OJ<
DEFINEI'I =W2.
PHASE CHANGE YI-01.
SET 1' =;. 2 '= - %Nk.
AND SET fl=A o2'=A=0.

ZoO Z=AZ 0

STEP 1
NOW FIND .,, 02, AND p
AND A.,, Aa2 AND AP.
USE TO APPLY PHASE
CHANGE IY2(z=0)-I2(z=01

STEP 2

STEP 3

... (

z=O z= z z=AZ+ Az, 

0,Ib FIND o, 02, AND P AND

A.,, Aa2 AND AP3 AGAIN
AND USE TO APPLY
PHASE CHANGE
WItAzo) *lAZO).

z=O z=Az% z=A^+Azl Z=AzV4Z
1+Az 2

I I Advance 0, TO Az. + Az, + AZ I

I I
oj(|k) 1 02(".'+ AZ,) FIND .1, , 2, AND P

AND Az
1
, Az2, AND APl.

APPLY PHASE CHANGE
Y2( +Iz,)-, 2 1A{0+ A.1 .

Fig. 1-Leapfrog procedure for advancing the wave function ID

particular physical situation. This second card can contain the actual physical parameters'
or a set of dimensionless parameters.

First Input Card

The parameters read from the first card are listed in Table 1.
of these parameters is as follows:

Table 1-Parameters Specified by the
First Input Card

A description of each

15

r-
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Columns I Name Format Columns I Name Format

1-5 PHIMXX F5.0 36-40 NPM I5
6-10 ROCULT F5.0 41-45 NBM I5
11-15 HXY F5.0 46-50 NPLOT I5
16-20 NXY I5 -51-55 NCT I5
21-25 NCW I5 56-60 NRS I5
26-30 NAD 15 61-65 NPUNCHI I5
31-35 NMS I5 75-80 NID A6
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PHIMXX. This is the maximum allowed phase change in radians for any point in the
computational grid at each z step. It is used to define the newly computed z increments
HZN at each step, where

g3 (X, Y, Z)max HZN = PHIMXX,

in which g3 (X, y, Z)max is the maximum value in the computational grid of g3 , given by
Eq. (72). PHIMXX is nominally entered as 1.0. If more z steps are required, PHIMXX
can be decreased. In this case the z increment is tied to the amount of heating in the
atmosphere, becoming smaller automatically as large density changes take place or
becoming large and efficient when near-vacuumlike propagation occurs. If HZN exceeds
0.1 of the total propagation distance, the smaller of these two z increments is used. If
HZN at any time is less than 10-7 times the distance to be propagated, the program exits
and an error message will be printed.

ROCULT. This is used when propagating uniform circular beamshapes with an obscuring
disk or a uniform rectangular beamshape. In the former case ROCULT is the ratio of the
occulting radius to the total radius. For a rectangle, it is the ratio of the y to the x
dimension. ROCULT is used only when NBM equals 4 or 5.

HXY. This parameter defines the size of the computational grid relative to the aperture
radius by

Ax = Ay = HXY

where Ax and Ay are the sizes of individual computational cells, which start out square.
Depending on the beamshape, values between 0.1 and 0.3 are typical.

NXY. This is the number of individual computational cells along the edge of the entire
computational grid. The FFT routine is more efficient when NXY is a power of 2, and
NXY is normally entered as 64.

NCW. This parameter permits CW propagation to be included by allowing the summation
in Eq. (72) to be replaced by an integral [7]. Before the summation is replaced, Eq.
(72) can be written in terms of physical parameters as

3N(y - I)k2 aEp eaz i2
E s2 [x - n(vo + 2z)At, y,Z1 12.

as ~n=-1

This summation is performed when NCW = 0. When NCW = 1, the program is in the CW
mode, and Eq. (72) is replaced by

3N(y - I)k 2 aPe az +xyz 2 '

c8
2(vo + 12z) f 14(x + x,)y' Z)12 dx',

16
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where P is the average power of a CW laser (P = EplAt). The integration is performed
using a simple trapezoid rule.

NAD. When NAD = 0, the coordinate system adaption is not included. When NAD = 1,
it is included.

NMS. When NMS = 0, the midplane integrations are not used. When NMS = 1, they are
used.

NPM. When NPM- -1, the second data card contains physical parameters. When NPM=
+1,.the second card contains dimensionless parameters.

NBM. This parameter selects one of the five beamshapes available within the program:

NBM = 0-Infinite Gaussian, with WIDTH (a parameter read from the second input
card) being the e-1 intensity radius;

NBM = 1-Truncated Gaussian, with WIDTH being the e-1 intensity radius, trun-
\ cated at A/2 X WIDTH or e- 2 intensity radius;

NBM = 2-Uniform circular aperture, with WIDTH being the actual aperture radius;

NBM = 3-Uniform square aperture, with WIDTH being the dimension from the
center of the square to the edge (half-side dimension) in the x or y
direction;

NBM = 4-Uniform circular aperture and an occulting disk, with WIDTH being the
total aperture radius and, as stated previously, with ROCULT being the
ratio giving the occulting disk radius;

NBM = 5-Uniform rectangular aperture, with WIDTH being the half-side x dimen-
sion and ROCULT being the ratio giving the y dimension.

NPLOT. This determines the type and the number of plots given in the output:

NPLOT = 0-No plots;

NPLOT = 1- Final contour plot only;

NPLOT = 2-Final contour plot plus a plot of average intensity and peak intensity
versus z;

NPLOT = 3-Preceding plots plus a plot of flux and area versus irradiance;

NPLOT = 4-Preceding plots plus a contour plot of aperture intensity;

NPLOT = 5-Preceding plots plus Fourier-transform contour plots of aperture and
final intensity distributions.

NCT. This determines the contour levels used in the contour plots:

NCT = 0-Contour plots use contour levels with 10% increments;

NCT = 1-Contour plots use 3-dB contours (0.5f, n = 1, 2, ... , 10).

NRS. When NRS = 1, the final contour plot is corrected and standardized according to
an internal criterion, to remove the effects of different amounts of coordinate system
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adaption in the x and y directions. When NRS = 0, this plot can appear with nonuni-
form axes.

NPUNCH. This determines whether there is a punched-card output:

NPUNCH = O-No punched-card output;

NPUNCH = 1-Punched-card output for later data processing.

NID. Up to six characters can be used to identify a run or a series of runs on both the
printed and punched output.

Second Input Card

The data contained on the second input card depend on the value of NPM. If NPM
= -1, the physical parameters listed in Table 2 will be read. A description of each of
these parameters is as follows:

OM. The slew rate in radians per second.

HT. The interval between pulses in seconds, or
the reciprocal of the pulse repetition frequency
(PRF). For CW propagation this should be set to
1 second.

ALPHA. The absorption coefficient a in km- 1 .

ALPHAS. The scattering coefficient in km- 1 .
ALPHAS is used to compute the total extinction
but is not included in the absorption that pro-
duces atmospheric heating.

WIDTH. The aperture radius a in centimeters.
The particular definition is given in the preceding
subsection for each value of NBM.

WN. The wavenumber k = 27r/X or 27r/flX, where j
wavelength in centimeters.

Table 2-Parameters Specified
by the Second Input Card

When NPM = -1

Columns] Name | Format

1-5 OM F5.0
6-10 HT F5.0
11-15 ALPHA F5.0
16-20 ALPHAS F5.0
21-30 WIDTH E10.0
31-40 WN E10.0
41-50 VO E10.0
51-60 ENERGY E10.0
61-70 F E10.0
71-80 ZF E10.0

is the beam quality and X is the beam

VO. The wind velocity vo in meters per second.

ENERGY. The individual pulse energy Ep in joules. For CW propagation ENERGY is
the average power in watts.

F. The focal length in kilometers.

ZF. The distance at which the calculation is to be stopped in kilometers.

As already shown, the propagation is a function of five dimensionless parameters.
Different combinations of the eight physical parameters, which are required to define
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these dimensionless parameters and which lead to the same values of the dimensionless
parameters, will produce identical results. In order that a unique physical situation be
specified, some physical quantities are also read from the second data card when NPM =
+1 (Table 3). They are not used to define the physical situation but rather to assign
units to the derived quantities at the end of the calculations. The quantities read when
NPM = +1 are:

Table 3-Quantities Specified F. Focal length in kilometers.
by the Second Input Card

When NPM = +1 HT. Pulse interval At in seconds (=1 second for
I I I CW).

PNA. The f number = WIDTH/F.

PNALF. Absorption number, ALPHA/F.

PNK. Fresnel number, WN WIDTH2/F.

PNO. Overlap number, 2X\- WIDTH/(VO * HT)
for an infinite and truncated Gaussian beam and
2 * WIDTH/(VO * HT) for all other beam shapes.

PNS. Slew number, OM -F/VO.

PND. Distortion number, 3Nk(y- l)afEp/c2a voAt.

PNZ. The ratio of the distance at which the calculation is to be stopped to the focal
length, ZF/F.

Examples of Output

A series of multipulse runs was made varying the pulse spacing and energy so that
the average power remained constant and using a number of average powers. The results
of these runs are shown in Fig. 2 in the form of power optimization curves. The CW
curve is included so that the convergence of the multipulse curves to the CW curve, as
the limiting case when pulse interval is decreased, can be readily observed.

To test the SSPARAMA code in the CW mode, some comparison runs were made to
check against some results obtained from Jan Herrmann of Lincoln Laboratory, who
studied the propagation of a CW infinite Gaussian with a e-2 diameter of 70 cm. The
absorption coefficient was 0.07 km-1, with no scattering. The laser was twice-diffraction-
limited DF with a wavenumber of 8.5 X 103 cm-1. Two cases were considered at focal
lengths of 2, 5, and 10 km. The first case had a power of 10 MW, a wind speed of 250
m/s, and no slewing. The second case had 2 MW power, a 2-m/s wind, and a 0.02-s-1
slew. The results, consisting of the area containing 63% of the focal-plane power and of
the peak intensity are summarized in Table 4. Arel and Irel compare these quantities
with those that would have been obtained if there were no thermal blooming. The results
for these highly bloomed cases agree within about 5% with those of Herrmann.
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Columns _ Name _ Format

1-5 F F5.0
6-10 HT F5.0
11-20 PNA E10.0
21-30 PNALF E10.0
31-40 PNK E10.0
41-50 PNO E10.0
51-60 PNS E10.0
61-70 PND E10.0
71-80 PNZ E10.0
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Fig. 2-SSPARAMA results (F = 1 km, diam = 70.7 cm
(l/e), a = 0.1 km- 1 , k = 2966 cm- 1, vo = 10 m/s, and
Q= 0.1)

Table 4-SSPARAMA Results for the Propagation of a CW Infinite Gaussian
With a Wavenumber of 8500 cm-1, an e- 2 Diameter of 70 cm, an

Absorption Coefficient of 0.07 km- 1 , and No Scattering

Focal Area A Relative Area Peak Relative Peak
Focal CotaiPeakrelIntensity IrelLength ConaiingAenselaivtT

Length ; 63% of the Relative To Intensity
F Focal-Plane No Thermal Ipeak No Thermal

(kin) Power (cm2 ) Blooming k m Blooming

First Case: 10 MW Power, 250-m/s Wind, and No Slew

2 57.6 20.3 147 0.0464
5 658 37.0 10.3 0.0251

10 3543 49.8 1.33 0.0184

Second Case: 2 MW Power, 2-m/s Wind, and 0.02-s-1 Slew

2 64.8 22.8 26.8 0.0422
5 474 26.6 2.96 0.0359

10 2018 28.4 0.495 0.0341.

Another example of SSPARAMA output is illustrated in Fig. 3, namely, the final
contour plot for the 5-km run from the first case with 10% contour levels. The com-
plete printed output from SSPARAMA is included in Figs. 4a through 4c.
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Fig. 3-Contour plot with 10% contour levels for the
5-km run from the first case in Table 4 (PNALF = 0.350,
PNK = 10.400, PNO = 0.002, PNS = 0.000, PND =
80.000)

Figure 4a, the first page of printed output, is almost self-explanatory. Both dimen-
sionless and physical parameters are listed; one is computed from the other, depending on
which was entered. The program options indicate the mode, either CW or MP and the
beamshape etc. The results summary in Fig. 4a includes the final value of the energy
conservation integral, Eq. (2). This quantity, which is ideally equal to 1, gives a quick
check on the validity of the numerical calculations. One factor that limits the accuracy
is the use of a finite mesh size. As this mesh is made finer, the intensity distribution gets
closer to the mesh boundaries, and numerical errors may enter through diffraction and
the use of a discrete Fourier-transform routine as energy is reflected off the boundary.
To avoid this reflection, the outermost boundary of the computational grid is set to zero
and the next outermost boundary is set to one half its value at each z step. Thus the
sum over normalized intensity gives an indication of how much energy was lost due to
boundary-value problems.

The area that is given in Fig. 4a is the area containing exactly 0.63 of the total flux
obtained by linear interpolation between adjacent flux fractional areas. This area will
include contributions from several peaks as the intensity pattern breaks up under severe
blooming conditions, so its meaning may also require a suitable interpretation of the
intensity contour map. In addition the relative area and maximum intensity are calcu-
lated relative to the focal area and intensity of a vacuum-propagated infinite Gaussian
whose e-1 diameter is equal to the value of WIDTH regardless of the beamshape being
propagated.
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**' MEPHISTO INPUT WATS *..

DIM0NSI0)LESS PARAMETrRS PHYSICAL PARA4tTEPS NUMERICAL PARAMrTFRS

KA * 0,000049 RADIUS(M) * 0'248 HY * 0,20
KALF * 0.350 4LPHA(I/KM) * O.U70000 Hy * 0,20

NA * 10,40 ((i/CM) * 848093 NY * 64
se 0 . 0A1RAns:) * U49,98 NY . A4
NO ' ooo E4EnciRAD/seC) * 0.OOOn PHIHMX *1,oVo

kc * 0,000 ENERGY(MJ) * 10!20:9
h2 * 100C 9(KM) * ;0T00.

MTCSECI * 1,u00000
AILPIAS(i/KM) * 0.000l00

PROGRAP OPTIONS

MODE tw
OEAMSHAPE INFINITE GAUSSIAN

ADAPT1ON YES
HALFPSTEP INTEGRATIEN YES

PUXNC0E CARD ELTPUT he
hUMBER OF PLeTS B

LeN LEVEL CONTOURS NO0
RESCALE FIINAL CONTOUR PLOT YES

**e RbS),iTS *

THE CALCuLiTIONS REACHED Z . 5.00000 (KM)

THE SUP OVER NORMILIM INTENSITY 4 1.00000

THE NINOER Me Z.STEP5 * 22

iVERAGE PeWER (ME) EmItTED AT APERTURE * 10420,694

AVERAGE TRANSMITTED POWER (KW) C 7343,339

AREA ISOCP) CONTAINING 0.63 8F PSWE * 607.995

A REL (RELATIVE TR INF, GAUSSIAN) ), 6.982

AVERAGE INTENSITY (KW/%OEM) IN T41S AREA * 7.031

PEAK INTFNSITY (KW/SOCM) * 1o.345

I REL (RELATIVE TO IN, GAUSSIAN PEAK) * 0.02507

Fig. 4a-First page of the output by SSPARAMA, containing the
input that resulted in Fig. 3 and a summary of the results

'Figure 4b, the page containing numerical data, begins with a list of internally com-
puted quantities that relate to the problems of air breakdown and t-cubed self-blooming.
They are printed only for possible future data analysis. Assuming the breakdown
intensity at 10.6 gim is 3 X 106 W/cm2 and that this is inversely proportional to wave-
length squared, the following quantities are computed as a function of range: the mini-
mum area required for breakdown, the ratio of this minimum area to the vacuum area,
the maximum pulselength before breakdown occurs, the critical power, the saturation
time, the intensity produced by the critical power propagating in a vacuum, and factors
accounting for turbulence with values of C,2 of 10-15 and 10-14. This is followed by an
x and y slice through the aperture to check the initial beamshape.

The quantities, including the values of HZN in z/ka 2 units, relating to the coordi-
nate system adaption are printed at each z step. The headings D, DI, D2, ALPHA1,
ALPHA2, BETA1, DALPH1, DALPH2, DBET1, and XCEN correspond to D, D1 , D 2 , a1,
a2 , 3, Aa1 , AU2 , AA3, and X used in the second section of this report. Also included is
EPSMX, the maximum value of the'summation given in Eq. (72); PHIMX, the maximum
value of the positive phase change applied to k to obtain 41; and PARM, the number of
pulses, for the MP mode, that occur in'a computational cell.

Figure 4c, the output data, lists in the top portion the area, flux, the area fraction,
and flux fraction contained within each contour level. From these data the 63% area is
interpolated. This is followed in the middle portion by the z locations of the maximum
of the average and peak intensities, the minimum 63% area, and the minimum z step that
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*.. Ni6MERICAL DATA ...

TP tS EC's
5.54;95003

2.oI76.004
2. 6i7.oo4
2, 5016,004
100175,004
1,6224.004
1,6Sa4.054
1,.7659 55

PCRIWI
,042'0005

5, 12 760 05
6,5774.5 5
7, 6732* 05
8,6091*005
904546.005
1,0243*006
1, 0994*006
1,1720.006
1,24287006

ISATiSEC)
5,4483.005
2,505,4 00,2 ,2 5 55-005
2,129?:0003
2. o 49- O 5

1,9536.so5
1,9227-0.05
1.8988000
1,800 ojo5

NORMALIZEE APFLITUDE SAMPLES AT APERTURE

AT X0 23 Y. I TO 64

0,0 0, 0.D0 CIO 0 0.0 t.O 0,0 000 0;0 0,0 0,0 0.0 0,0 0,0 0.0 0,0 0.0 0 0
0,6 0,5 0,5 t,4 0,4 0,S 0,2 0.2 a.1 0.1 0.1 0,0 D,0 0,0 0.0 0.0 0,5 0,0 0.0 0.0 0.0

AT Y! 32 X. I To 64

0,1 O.i0,1 0;2 oz 2 0.3 o,4 0.4 005 0,9 0.6
0.0 0C0 0.0 0,0 0.0 0.0 0.0 0a0 0'o O." 0,0

5,6 0, 5 0,4 C0,4 0.0 0,2 0,2 0.1 0.1 0,1 0,0 ,0 0.0 0.0 0,0 0,0 0,0 0;0 0.0 0.0 0.-0 00 00 . 0. 0,30 0. 0.0.0.0 O.5 0,0

Z I$ D tl G2 ALPHAS 4LP19A2 FTAI1 DALPC4 DALPW2 DBET1 xCEN EPSMX FPWMX PARM

o 224 2 2:oS n0,9124 0.si24 0,9t14 *4-906490 4,949 076o05
5,442 4,2.O23 n ,0211 0311 0,0339 2,467360 *4,5569 *0j76

0
2

o 
6
5

5
4 soC3 a 7555 o,7555 0,7605 .4,5120 4,2t66 0,t267

8,063 4,00a 0,6049 0,6049 0,7o64 j,29J2 .3 ,030 0!771R
,060 4'o-oo 0,6189 0 6190 0,6430 ,6,07j0 .J!5i .1,6040
1 271 3 0.00 0.5S7D 5574 051 ,S,8525 0,3 :1i2258
1 471 S o , 498 0 06 0 5480 ,s,613 0 .2XD5 o: , 1,4350
1,672 3,S.:c3 5,4441 5,4656 0 SCSI 3,4 058 *2,592 .176325
1.072 S,9woes 3,3027 0,3051 0,4733 ,I;t740 .22156 1'.13289
2,073 3,0*3 o03:42 o 1 0,4436 ,09O w : 1,e47
2,277 3,0s' 2 o2 o2 30 04103 72,6 * 5 2,1615
2 ,44 'O0OC3 a 254 0,2644 o *9,4xn *t,?5 *l 23214
2,606 * 6C0 0o2150 0,2201 C .2,16 S a0, .VI *2,4244

3 34 2 or 3 o1429 o0t169° D o.9457i829 S572s7
3 367 4,4.003 51O09 01473 0,4084 9i,1654 1,0:05 .3;616
3,610 4 , 0 0 C3 0 0 21 01:320 0 44i2 .,o7796 t 7637 .S,5548
3,069 4,:0553 0,0567 0,1239 0:4911 .es3s4 2,5773 *;6476
4,142 5,1 oC3 0,035 0,1220 o.5595 .Oo79 3,3661 .4,5064
4 431 5,4-503 0o0202 0250 o46404 071831 4,1:40 Pi* -23
4,740 57 CC o00110 0:,1352 0,7622 0,*412 4,9725 *5 7477
5,o0o 6,2.03o 0,0092 Oj471 0,8731 0,6177 5,7 17 .6 S3666

0I0001 0,1749 -. ,2020 0.n0005 5:5.004
o,ooo'9 0,170 .0,2s33 .0,0336 5,2.0d4
5,5o24 0,i878 .- ,2s3s .o.o920 5.0.004
0o0049 0 507 .5,2805 .o,1845 4,7.004
oo806 o ,js4 ., 2075 .I S09i 4.4.004

0 0136 0 2043 .6.2008 *o4,673 41.i004
0,5204 0,2194 .6,2937 .0,^61 s,9 3.04
0,0295 0,2306 .o,2990 :.0:946 3;6.004
oo414 5,2664 .6.3062 .i.1706 3S3.0o4
o o572 o ,3o7 .a st161 .:0946 3.0.004
0 07 30 78 .0 33aI .1 ,735 2.80604
0 1o67 0 43139.9,3530 .2,3109 2:5.004

.A9, 3 0o8664* 5 2.-004
o194i a 1707 .e.43700 :3:4622 2;.00

o:2 7 o 054, 1 .5o9 4,57025 I004
0,3250 O,6009 .0,5920 .5,tl28 1.7.004
o32473 0 ,643 :0,6250 .6,2478 j.6.004
0,3004 0,5!12 .6,5733 .7.6632 1.5.004
0,2350 0,4 St *0.4779 9.,604 1.5-504
o 1012 0,4203 .6,4 0.1±,3604 .,5.004
o01636 5,3809 .6,3554.3i,6639 1.6.004
0,1158 0,28t9 .0.2570.15,7174 1.7.004

Fig. 4b-Second page of the output, containing numerical data

have occurred during beam propagation. Then in the lower portion the peak and average
intensities, the 63% area and the location of the peak intensity in centimeters are listed
at each z step.

Summary of Program Structure

When the half-step integrations are used, the solution is advanced twice before the
information at each z step is stored. This can be seen from the flow chart of
SSPARAMA (Fig. 5). Thus, when NMS = 1, the program actually used twice the number
of z steps that are printed and included points approximately midway between those
listed.

The structure of the code SSPARAMA is explained below and summarized in the
flow chart in Fig. 5.

* The call to subroutine START causes the input data to be read. The real part of
the 64-by-64 array 4, is defined according to the beamshape specified. Initially the phase
of this array is zero.
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RANGE (Km)

O I 
4
D 56

1 I 11611
X~7,67

2 2 22722
2 ,7e278
3 ,:2 9 3e33

4 44944
5,tos0o

AS2 (CN2)
se.99318

"it, 0 3 49 3

I65'l 41931
05,8,3 3530

2018. 48219
2147, 25482
2252 39000
23305 50222
2408 ,90607

A$2/A2D
O'j6193

3.77194
69;g9563

i6;5i645
30,59665

7, 4ioit
,9631625

424; 44483

ISAi(W/A/M2)
4.57j2*oftl
2. 43705oo5
3,9261.002

'7 98 a o2

.5200*003
2.7584*003
5,0011.0503
I 720 2. 4
3J 626.004

TURPOC R S
1. 000 nl'000

9,900ooo10 I 0a 60 oI

S,7823.no0
9.350.not
2, j745no I

2, 84i8Cno

TURPtER2

,90047.501
a, I03 70 .55O 1
0,6907.001

7 9200.001
4, :763 5. a 01

07 239 002

j,071i.oo2

6,1000 2 0.004
b.4949 .9 .004
a'4935 j8.004
n4919 1,7.004

6,49n3 j,6.5o4
04,67 15.54
o0:850 4:004
6,4852 j.3 0n4
nO485 t-2.On4
o479 i'2.004

6,4744 1:1.054
0,4772 1os.oo4

n.4755 0:1.0554.7n5 S.-I.005
o.'774 7.6.055
6O4793 7:2 05
o 40i6 7.-os5
6,4852 6;0.0O,
6,400 7,50.05.
6, 409 73.356
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**. 8UTPUT DATA *-.

AREA tLUL
(SO CM) (KW)

8;78i10o 8,06156052
i175.0'02 1,6J04003
2'0163.002 2,3s04003
1o0399+o2 3,274go03

5,795,002 ,2§14 03
7,2006002 4,9154003
9s48*3002 P,7544no3
11177.003 6,323+003
[15880003 *69A0+003
11 2 6. 00 3 7 , 1~ 6450

MAxIMUM AVG I
MAXIMUM PEAK I*
MINIMUM AREA
MINIM UM A2

IAVE
3,421
3,688
3,973
4,277

,606
4 ,970
5,361
,792
6,274

6 ,79
7,430
86,265
9,320

10 ,786
12,922
15, 27
18,f27
18,601
15,s 99
12,970
10,239
8,277
7,031,

i63
19% 81802
1762;298

13!2, 439
1OW5 ,665
1V'0j4 31
1 a21527
980,e906
748; 033

6?? 1725
5j1b981
503156 4

276-696
2~4-.121
32ljQ08

40?7 996
627;i 69

AREA
FRACTION
0,5556
0. 1111
0. 1667
0,2556
0,3667
D 04556
0,6 00 0
0, 7444
1,00DO0
1,1 556

1. 0873S001
3*,841*001
2,741*002
2. 170-003

5,308
5,719
6 152
6,608
7,083
7,570
8,060
8,533
9,217
9 ,930
15,776
12,564
j3,519
16 ,24
20,38725,:61112, t1t

32, 220
38 , 413
33, 563
21,360
16, 150
12, 452
10,345

FLUX !RRADIANCE
FRACTION IKWASQ-CM)
0,1173 9,81.*000
0,2219 9,280*ooo
o, 3j9 6,806.000
0,6458 8,105.000
0. 58o7 435.0

0, 6693 6,826'000
5,7836 6,067.000
0, 8611 5.3S74. 00 0
0, 9438 4,3S89.000
0,9704 3,902.000

AT Ze 3,069000
AT Zi 3.610*000
AT Z. 5,610,050
AT Z* 1,08.006

XPGAK

I,0056

10,06

.3, 30 4
.3,1 12
.5,94i

.5,.464
:76326

.7,:093

.5, 7050

.5, 399

.5, 46 0
.5,695

VPPAX
olooo
oloco
O;DOO
0,000
4,,43
3.972
$.812
3664
3,528
oloos
3S297
3:233
3'1143;O .i3S

6,.186
6 ,327
6,576
3;469
S.7 03

ODOOo:looo
o;ooo

Fig. 4c-Third page of the output, containing the
remaining numerical data

* The initialization procedure continues with the call to INTENS, where the
aperture intensity is computed at each mesh point.

* The call to DENS computes the quantity g(x, y, z) given in Eq. (63) and then
applies the phase change given by Eq. (62) which converts 4, to (D. The first z increment
is also computed.

* The main program loop begins here with a call to OUTPUT to store various
values until the calculations are completed.

* The call to ADVANCE applies the Fourier transform of Eq. (67) and then the
phase change of Eq. (68). The array is Fourier-transformed back to yield 4)(z + Az).

* The intensity is computed with the call to INTENS, and the boundary values of
the array are tapered to zero.

* The call to DENS now includes a call to VTRANS, by which the phase change
of Eq. (62) is reversed, converting () back to 4. The quantities {a1 , a2 , B } and
{AU1, Aa2 , AP} are found in VTRANS, and the values of D1 and D2 are updated.
After the return to DENS, Eq. (63) is solved and the phase change of Eq. (62) is reap-
plied, converting 4 back to (D in preparation for the next call to ADVANCE.
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LEVEL
o . 90 00ao~eooo
o,o7000
OL5 000

°l,4000
0, 000

o;gOOOol. 2 0

2

a,224
0,.42
0,655
1,068
1 17j
1,470
1,672
1 872
2,070
2.277
2,48'
2,696

3 136
3 364

4,14i

5,?coo
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CALL START CALL ADVANCE

* READ INPUT CARDS * CHANGE 4, TO K SPACE
* DEFINE qI * ADVANCE (DI
* INITIALIZE CONSTANTS * BACK TO REAL SPACE

CALL INTENS

* GET INTENSITY
*APERTURE INTENSITY,

CALL DENS _ LV
CALL DENS * MP SUMMATION CALL VTRANS

* MPSUMMATION * ZINCREMENT * ¢1 -44 1
* FIND INITIAL Z INCREMENT * ( D'>2 * ADAPTION
* PHASE CHANGE ' I'q, 

t r g Z ~~~~~LESS NO

CALL OUTPUT FINAL

* STORE CURRENT VALUES \

>' j<M~~~~~S= 1
/ DID \-E

THELASTZ
STEP TAKE LESS THAN CALL ADVANCE
3TIMESTHETIME NO ADVANCE 42

EMAINING'

YES |CALLINTENS

I
| CALL DENS_ _

| .~Z INCREMENT CAL VTRANS
|~~~q I -r 4 v)1 * 4)2 -+ q2

|r *~~ ADAPTION

YCES g z LESS
YES THAN 

FIN

CALL OUTPUT
* PR INT R ESU LTS -4
* DRAW GRAPHS

Fig. 5-Summary of the code SSPARAMA
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* Now that one cycle of propagating the solution is completed, the code checks if
z final has been reached and if the half-step integrations are to be performed as outlined
in the section titled Numerical Procedures.

* When z final has been reached or the time limit of execution is near, the last
call to OUTPUT prints the results and ends this run.

The Appendix contains a complete listing of the code with copious comments
included.
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APPENDIX A
Listing of Code and Comments

PROGRAM SSPARAMA
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMMON /999/ A1(64,64), A2(64,64), ITENS(64964)
COMMON /AAA/ EPS(64,64),EPSO(64,64)*AOUT(11,99),BOUT(9910),

* AIN(,2,64),[)ALPH1(2),I)ALPH2(2),.3LETl(2),ALPII10(2),ALPh20(2),
* BETLD)(1(, D1E)(2), D20(2), R()D10(2), RD2fl(2), SRTD10(2), XCENO(2)

COMMON /BBB/ TENS(64964), GI(64), G2(64), Pt-ASt1(64), PHASE2(64),
* CONMIN(10) ,M2(3),SV1(64),SV2(64),PARM(8C)

COMMON /SINGLS/ F9 PNA, PNALF, PNK, PNO, PNS, PND, PNZ, HX, HY,
* HZ, Z. ZZZZF, ZNM, ZFINAL9 XZERO YZERO, WIDTI-, ALPHAj. WN,
* VODT, OMDT, HT, ENER(,Y, ALPHAC, CS, REFRAC, GAMMA, FE-_ CTK,

* EJTKJ, RHT, POUT, DARFA,';2t TS, TPULSE, A52,PCRSITCOR1,TCOR2,
* Z1, RI63MXi Z2, RIMXMX, 139 APMN, Z4, HZMN, OKAREL, TENSMX0
* EX. PlIIMX, EPSMX, ERRMXt DGMX, Rls EDIMAX, VTERM, PHIMXXHZN'lS, 14

P1, IAX, JliAX, NX, NY, NAD, NX2, NY2, NXY9 NXDIM', NYDIM, NPT,
IPLOTNITERNBLJF,?NXMNYMNMS,'N.FLAGDlD)l2,P1,P2,S2TD1,SRTD2R

* R5RD12,XCENTLASTSoIRT8,PNI3D,(-C(-OC O,b6C(NE1IHCZ1CHCZ20,HCZ1N,
* HCZ2NFICZ12,ALPH1,ALPhl2,BETlCCN1,CON2,HZOHZNEXOEXN k,,TT11,:T2

COMMON /OUTS/ NB^1JSCLFAC NRSXINP.1,NCW,NNEXITNPLOT 'NPUNCFI
C * * ;. ;' * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

COMPLEX A1, A2
LOGICAL LS
DATA (CS=34!0.)0I, (REFRAC=0-154), (GAMMA=1.4), (ETJ=1lOE-7).

* (CTK=1.O'-E-5), (PI=3.1415926'), (BIDI=3.CF6). (EJTKJ=l.OF-3)
DATA (NXDIV=64), (NYDINi=64), (NZ=70)
SANK, ( I )/999/

C
C INPUT AND INITIALIZATION.
C

TSTART=T IME-LE.FT( (IDlN"'Y)
LS=.FALSF.

55 CON' T I NUF-
CALL START(LS)
NEXIT=C

N I T ER = (.
IPLOT=,

Z Z 2 = GI . .ZZ2=0.(.'
12=2
IF (NMS .EO. O) I2=1

CALL INTFNS(A1,.FALSE. )
CALL DENS(A1, A1, ZZ1, 1, 1, *FALSE.)
HZO=3 . i

C** **';r***;;r;*$';X 'i*'-*ar' **--**~*; *;*** !. 8-* ***,.-r;.***X*;f L '*~*4***** .******~
C
C

C koAAIN PRCGNA?"' L.(OOP
C
14 CONTINUE C

NITER=?ITER+1
C
C STORE VALUES FOR LATFR PRINTOUT
C
2 CALL OLJTPUT(.FALSE.)
C
C IF TIME REMAINING IS LESS THAN 3 TItES THAT FOR ThE LAST

C z STEP - EXIT
C

27



WHITNEY, MADER, AND ULRICH

3 TNOW=TIMFLEFT(;I)
DT = T LAST- TNOW
T LAS T T N OW
IF(3*DT*LE*TN).W') GO TO 8
PRINT 22,Z

22 FORMAT(//25X25H*** TIME AUORT AT Z(K'' =FlU'.5,X3rl***//)
GO TO 13

8 CONTINUE
C
C ADVANCE FROM ZZ TO ZZ+DZZ CALCULATIN(, NEv A>I-LIIUljS INj A
C
40 CALL ADVNCE(A1,l)

CALL INTFNS(A1, *FALSF.)
CALL DENS(A1 A2, ZZ1, 1, 12, *TRUE.)
IF (Z *GF. ZFINAL) GO TO 15 C

C
C REPEAT IF HALF-STFP INTEGRATION IS INCLU:E,)
C

IF (NMS *EU. (:) GO TO 45
CALL AOVNCE(A2,21
CALL INTENS(A2, *FALSE.)
CALL DENS(A2, A1, ZZ2, 2, 19 *TROFU)
IF (Z *GE. ZFINAL) GO TO 15

45 CONTINUE
GO TO 14

C

C
C SET NEXIT EOUAL 1 FOR PREl'ATUkC EXITS
C
13 NEXIT=l
15 CONTINUE
C
C FXECUTE ALL OUTPUT
C

CALL OUTPUT(*TRUF*)
PRINT 16

16 FORMAT(lHI)
17 CALL STOPPLOT

C PRINT RUN TItME (CP TIME)-
TRUN=(TSTART-TIl-:tLEFT(I;t/N.:',,Y))/s1.:.
PRINT 18,TRUN

18 FORMAT(//,16(11i*),* RUN Tli.F=*,F6.2,* MINUTES*)

STOP
FND
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